Chapter 7
Assembly Language

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, Y. Malaiya
Colorado State University

|

/
Fi
/
\

X

b

—
-

(4,
| L
Vg 8

— _,_.-'/

/

_\\-___F_-/ /

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
C ti Laye IS

Problems

Devices

CS270 - Spring 2013 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Human-Readable Machine Language

@ Computers like ones and zeros...
0001110010000110

@ Humans like symbols...
ADD R6,R2,R6 ; increnment index reg.

@ Assembler Is a program that turns symbols into
machine instructions.

= ISA-specific: close correspondence between symbols
and instruction set

@ mnemonics for opcodes
@ labels for memory locations
= additional operations for allocating storage and
Initializing data

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

An Assembly Language Program

Program to multiply a number by six

.ORIG x3050
LD R1, SIX ' R1 has constant
LD R2, NUMBER ; R2 has variable

AND R3, R3, #0 ; R3 has product
The inner loop

AGAIN ADD R3. R3 R2 :R3+=R2
ADD R1, R1,#1 ; R1isloop counter

BRp AGAIN ; conditional branch
| HALT
NUMBER .BLKW 1 - variable

SIX FILL x0006 . constant

.END

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Assembly Language Syntax

@ Each line of a program is one of the following:
= an instruction
= an assember directive (or pseudo-op)
= a comment

@ Whitespace and case are ignored.
@ Comments (beginning with “;”) are also ignored.

@ An instruction has the following format:
LABEL OPCODE OPERANDS ; COMMENTS

i

optional mandatory

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Opcodes and Operands

Q@ Opcodes
= reserved symbols that correspond to LC-3 instructions
« listed in Appendix A
@ example: ADD, AND, LD, LDR, ...

Q@ Operands
= registers -- specified by Rn, n is the register number
= numbers -- indicated by # (decimal) or x (hex)
« label -- symbolic name of memory location
= Separated by comma
= humber, order, and type correspond to instruction format

Q@ example:

ADD R1,R1,R3
ADD R1,R1,#3
LD R6,NUMBER
BRz LOOP

CS270 - Spring 2013 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Labels and Comments
Q@ Label
= placed at the beginning of the line

= assigns symbolic name to the address of line

@ example: LOOP ADD R1,R1#1
BRp LOOP

@ Comment

= anything after a semicolon is a comment

= Ignored by assembler

= used by humans to document/understand programs

= tips for useful comments:
@ avoid restating the obvious, as “decrement R1”
Q@ provide insight, as in “accumulate product in R6”
@ use comments to separate pieces of program

CS270 - Spring 2013 - Colorado State University

@ Pseudo-operations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembler Directives

= do not refer to operations executed by program

= used by assembler

= look like instruction, but “opcode” starts with dot

Opcode |Operand Meaning

.ORIG address starting address of program

.END end of program

BLKW n allocate n words of storage

FILL n allocate one word, initialize with
value n

STRINGZ | n-character

string

allocate n+1 locations, Initialize
w/chars and null terminator

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Trap Codes

@ LC-3 assembler provides “pseudo-instructions” for each
trap code, so you don’'t have to remember them.

Code | Equivalent | Description

HALT | TRAP x25 Halt execution and print to console.

IN TRAP x23 Print prompt on console, read character (in
RO[7:0]) from keyboard.

OUT | TRAP x21 Write one character (in RO[7:0]) to console.

GETC | TRAP x20 Read one character from keyboard.
Character stored in RO[7:0].

PUTS | TRAP x22 Write null-terminated string to console.
Address of string is in RO.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Style Guidelines

@ Use the following style guidelines to improve
readablility and understandability of your programs:

1. Provide a program header, with author’s name, date, etc.,
and purpose of program.

.. Start labels, opcode, operands, and comments in same
column for each line. (Unless entire line is a comment.)

;. Use comments to explain what each register does.
.. Give explanatory comment for most instructions.
. Use meaningful symbolic names.
* Mixed upper and lower case for readabillity.
« ASCIItoBinary, InputRoutine, SaveR1
. Provide comments between program sections.

- Each line must fit on the page -- no wraparound or
truncations.

* Long statements split in aesthetically pleasing manner.

CS270 - Spring 2013 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sample Program

@ Count the occurrences of a character in a file.
Remember this?

Count=0
(R2=0) Convert count to
ASCI| character

(RO = x30, RO = R2 + RO)

Done?
(R1 ?= EOT)

y
Ptr = 1st file character

A

(R3 = M[x3012])

Print count
4 Match? (TRAP x21)
Input char (R1?=RO0)
from keybd
(TRAP x23) .
\ HALT
Incr Count (TRAP x25)
Load char from file (R2=R2+1)
(R1 = M[R3])

4

Load next char from file
(R3=R3+ 1, R1 = M[R3))

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Char Count in Assembly Language
(1 of 3)

; Program to count occurrences of a char in a file.

; Character to be input from the keyboard.

; Result to be displayed on the monitor.

; Program only works if <= 9 occurrences are found.

- Initialization

| ORIG x3000
AND R2, R2, #0 ; R2 is counter
LD R3, PTR ; R3is pointer to chars
GETC ; RO gets character input

LDR R1, R3, #0 ; R1 gets first character
Test character for end of file

TEST ADD R4, R1, #-4 ; Test for EOT
BRz OUTPUT ; If done, prepare output

CS270 - Spring 2013 - Colorado State University 12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Char Count in Assembly Language
(2 of 3)

Test character for match, if so increment count.

NOT R1,R1

ADD R1, R1, RO; If match, R1 = xFFFF
NOT R1,R1 ;If match, R1 = x0000

BRnp GETCHAR ; No match, no increment
ADD R2, R2, #1

Get next character from file.

GETCHAR ADD R3, R3, #1 ; Point to next character.
LDR R1, R3, #0 ; R1 gets next char to test
BRnzp TEST

Output the count.

OUTPUT LD RO, ASCII ; Load the ASCII template
ADD RO, RO, R2 ; Covert binary to ASCI|I
OuT ; ASCII code is displayed.
HALT ; Halt machine

CS270 - Spring 2013 - Colorado State University

13

Copyright © The McGraw-Hill Compan Inc. Permission required for reproduction or display.

Char Count In Assembly Language
(3 of 3)

; Storage for pointer and ASCII template
ASCIl .FILL x0030
PTR FILL x4000

.END

CS270 - Spring 2013 - Colorado State University

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Assembly Process

@ Convert assembly language file (.asm)
iInto an executable file (.obj) for the LC-3 simulator.

yd A
/-L\SS€mb|y » 1st Pass —»{ 2Nnd Pass —>Executablé
anguage Image
Program \
Symbol
Table
Q First Pass:

= Scan program file

= find all labels and calculate the corresponding addresses;
this is called the symbol table

Q@ Second Pass:

= convert instructions to machine language,
using information from symbol table

CS270 - Spring 2013 - Colorado State University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

First Pass: Constructing the Symbol

Table
1. Find the .ORIG statement, which tells us the

address of the first instruction.
Initialize location counter (LC), which keeps track of
the current instruction.
2. For each non-empty line in the program:

» Ifline contains a label, add label and LC to symbol
table.

» Increment LC.
— NOTE: If statement is .BLKW or .STRINGZ ,
iIncrement LC by the number of words allocated.

3. Stop when .END statement Is reached.

= NOTE: A line that contains only a comment is considered an empty
line.

CS270 - Spring 2013 - Colorado State University

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Practice

@ Construct the symbol table for the program in
Figure 7.2 (slide 12)

Symbol Address

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Compan nc. Permis: required for reproduction or display

Second Pass: Generatlng I\/Iachlne

Lang uaq
@ For each executable assembly language statement,

generate the machine language instruction.

« If 8Ioerand IS a label, look up the address from the symbol
table.

@ Potential problems:
= Improper number or type of arguments

Q@ eX: NOT R1,#7
ADD R1,R2
ADD R3,R3,NUMBER

= Immediate argument too large
Q@ ex: ADD R1,R2,#1023

= Address (associated with label) more than 256 from
Instruction

Q@ can’t use PC-relative addressing mode

CS270 - Spring 2013 - Colorado State University 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Practice

@ Using the symbol table constructed earlier,
translate these statements into LC-3 machine

language.

Statement

Machine Language

LD R3,PTR

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR

CS270 - Spring 2013 - Colorado State University

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Assembler

@ Using “assemble” (Unix) or LC3Edit (Windows),
generates several different output files.

. This one gets
ind loaded into the
(-bin) A] | simulator.
Hex
Listing
— (.hex)

]
f:rfgl.rlr;tc_):jlg Object
Program Assembler » (Foi:s)

(.asm) _ .obj
Symbol
Table
7 (.sym)
Listing
File
(.Ist)

CS270 - Spring 2013 - Colorado State University 20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Object File Format

@ LC-3 object file contains

« Starting address (location where program must be

loaded), followed by...
= Machine instructions

@ Example

= Beginning of “count character” object file looks like:

0011000000000000
0101010010100000
0010011000010001
1111000000100011

CS270 - Spring 2013 - Colorado State University

.ORIG x3000
AND R2, R2, #0
LD R3, PTR
TRAP x23

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Multiple Object Files
@ An object file Is not necessarily a complete
program.
= System-provided library routines
= code blocks written by multiple developers

@ For LC-3 simulator, can load multiple object files
iInto memory, then start at a desired address.

= System routines, such as keyboard input, are loaded
automatically

Q@ loaded into “system memory,” below x3000
@ user code loaded between x3000 and xFDFF
= each object file includes a starting address
= be careful not to load overlapping object files

CS270 - Spring 2013 - Colorado State University 22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Linking and Loading

@ Loading iIs the process of copying an executable
Image into memory.

= Mmore sophisticated loaders are able to relocate images
to fit into available memory

= Mmust readjust branch targets, load/store addresses

@ Linking Is the process of resolving symbols
between independent object files.

= Suppose we define a symbol in one module,
and want to use it in another

= Some notation, such as .EXTERNAL, Is used to tell
assembler that a symbol is defined in another module

= linker searches symbol tables of other modules to
resolve symbols and generate all code before loading

CS270 - Spring 2013 - Colorado State University 23

