Chapter 6
Programming

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computing Layers

e a—
Elv
L
g T
; "
-
, ‘ S
(&)
S 2

Problems €

Devices

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Solving Problems using a Computer

@ Methodologies for creating computer programs
that perform a desired function.

@ Problem Solving
« How do we figure out what to tell the computer to do?

= Convert problem statement into algorithm,
using .
= Convert algorithm into LC-3 machine instructions.
@ Debugging
« How do we figure out why it didn’t work?
= Examine registers and memory, set breakpoints, etc.

Time spent on the first can reduce time spent on the second!

CS270 - Spring 2013 - Colorado State University

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stepwise Refinement

@ Also known as

Q@ Start with problem statement:

“We wish to count the number of occurrences of a
character in a file. The character in question is to be
Input from the keyboard; the result is to be displayed
on the monitor.”

@ Decompose task into a few simpler subtasks.

@ Decompose each subtask into smaller subtasks,
and these into even smaller subtasks, etc....
until you get to the machine instruction level.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problem Statement

@ Because problem statements are written in
English, they are sometimes ambiguous and/or
Incomplete.

= Where is “file” located? How big is it, or how do |
know when I've reached the end?

= How should final count be printed? A decimal
number?

= If the character Is a letter, should | count both
upper-case and lower-case occurrences?

@ How do you resolve these issues?

« Ask the person who wants the problem solved, or
« Make a decision and document it.

CS270 - Spring 2013 - Colorado State University

task:

i

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

i

Task

Subtask 1

Y

Subtask 2

Subtask 1

|

Sequential

Subtask 2

Three Basic Constructs

@ There are three basic ways to decompose a

Test
condition

True

l

CS270 - Spring 2013 - Colorado State University

Conditional

Subtask

lterative

False

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Sequential

@ Do Subtask 1 to completion, then do Subtask 2
to completion, etc. |

Get character
input from
keyboard

l l

Count and print the Examine file and
occurrences of a ﬂ count the number
character in a file of characters that

l match

l

Print number
to the screen

l

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Conditional

Q@ If condition Is true, do Subtask 1:
else, do Subtask 2.

:

Test character.
If match, increment
counter.

:

file char
= input?

ﬁ Count = Count + 1

True

False

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

lterative

@ Do Subtask over and over,
as long as the test condition is true.

'

Check each element of
the file and count the
characters that match.

d

:

more chars
to check?

Check next char and

count if matches.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Problem Solving Skills

@ Learn to convert problem statement
Into step-by-step description of subtasks.
Like a puzzle, or a “word problem” from
elementary school math.
« What is the starting state of the system?
* What is the desired ending state?
 How do we move from one state to another?

» Recognize English words that correlate to three basic
constructs:

e “do A then do B” = sequential
* “If G, then do H” = conditional
 “for each X, do Y” = Iterative
e “do Z until W’ = iterative

CS270 - Spring 2013 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

L C-3 Control Instructions

@ How do we use LC-3 instructions to encode
the three basic constructs?
Q@ Sequential

= Instructions naturally flow from one to the next, so no

special instruction needed to go from one sequential
subtask to the next.

@ Conditional and lterative

= Create code that converts condition into N, Z, or P.
Example: “Is RO = R1?”

Code: Subtract R1 from RO; if equal, Z bit will be set.
= Use BR instruction to transfer control to proper subtask.

CS270 - Spring 2013 - Colorado State University 11

A 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code for Conditional

Exact bits depend
on condition
being tested

A 4

Subtask 1

Subtask 2 >

\ 4

Next
Subtask

Unconditional branch
to Next Subtask

l

Instruction

PC offset to
address C

Generate
\Condition /
0000 T* ? c/
Subtask 1
0000 111 D\

S

Subtask 2

\

Next
Subtask

(

PC offset to
address D

Assuming all addresses are close enough that PC-relative branch can be used.

CS270 - Spring 2013 - Colorado State University

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code for lteration

Exact bits depend
on condition

Instruction

being tested
Generate
Condition
N /
0000 ? c/
B
Subtask
Subtask >
| 0000 '111 A \
C / N\
Next
14 Subtask
Next Unconditional branch
Subtask to retest condition

l

Assuming all addresses are on the same page.

CS270 - Spring 2013 - Colorado State University

PC offset to
address C

PC offset to
address A

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Counting Characters

(START)

\J

Input a character. Then
scan afile, counting
occurrences of that
character. Finally, display
on the monitor the number
of occurrences of the
character (up to 9).

Y

(STOP)

Initialize: Put initial values
into all locations that will be
needed to carry out this
task.

- Input a character.

- Set up a pointer to the first
location of the file that will
be scanned.

- Get the first character from
the file.

- Zero the register that holds

the count.
v

Scan the file, location by
location, incrementing the
counter if the character
matches.

Initial refinement: Big task into
three sequential subtasks.

v

Display the count on the
monitor.

Y

CS270 - Spring 2013 - Colorado State Universitg STOP)

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B

v

Scan the file, location by
location, incrementing the
counter if the character
matches.

Bl

Test character. If a match,
increment counter. Get next
character.

Refining B into iterative construct.

CS270 - Spring 2013 - Colorado State University

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Yes

B1 v

Refining B1

A

Bl

Done?

No

Test character. If a match,
increment counter. Get next
character.

B2

B3

Test character. If matches,
increment counter.

Y

Get next character.

Refining B1 into sequential subtasks.

CS270 - Spring 2013 - Colorado State University

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Refining B2 and B3 |

Yes
Done?
B2 No
YeS Done? Yes @ No
No —
B1 R2=R2+1
B2| Test character. If matches,
increment counter.
B3
B3| Get next character. | .
~ R3I=R3+1
Y
I R1 = M[R3]

Conditional (B2) and sequential (B3).
Use of LC-2 registers and instructions.

CS270 - Spring 2013 - Colorado State University

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Last Step: LC-3 Instructions

@ Use comments to separate into modules and
to doculment your code.

: Look at each char in file.

Yes = 0001100001111100 :is R1 = EOT?
[| 00000LOXXXXXXXXX . if so, exit loop
B2 No| - Check for match'\with RO.

1001001001111111 ; R1 = -char
0001001001100001
Yes — | 0001001000000001\ ;R1=RO— char

000010 XXXXXXXXX

; no match, skip incr

|R2=R2+1
| | 000101001010000 'R2=R2+1
\ -
; Incr file ptr and get\next char
B3 ' 0001011011100001 ' R3=R3+1
[R3=R3+1 |L—+—" | 0110001011000000 A\R1 = M[R3]
| R1 = M[R3] ! |
Don’t know
! PCoffset bits until

all the code is done
CS270 - Spring 2013 - Colorado State University

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging

@ You've written your program and it doesn’t work.
@ Now what?

@ What do you do when you're lost in a city?
= Drive around randomly and hope you find it?
v Return to a known point and look at a map?

v'In debugging, the equivalent to looking at a map
IS tracing your program.

Examine the sequence of instructions being executed.
Keep track of results being produced.
Compare result from instructions to the expected result.

CS270 - Spring 2013 - Colorado State University 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging Operations
@ Any debugger should provide means to:
.. Display values in memory and registers.
». Deposit values in memory and registers.

;. EXecute instruction sequence in a program.
.. Stop execution when desired.

1. Different programming levels offer different tools.

= High-level languages (C, Java, ...)
usually have source-code debugging tools.

= For debugging at the machine instruction level:
« simulators
e operating system “monitor” tools

e In-circuit emulators (ICE)

= plug-in hardware replacements that give instruction-level
control

CS270 - Spring 2013 - Colorado State University 20

execute
instruction
sequences

stop execution,
set breakpoints

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Simulator

54 LC-3 Simulator Interface

RO [x0000 R1 [x7FFF RZ %0000 R3 [x0000

R4 x0000 RS %0000 R6 x0000 R7 %0283

PC [x3000 IR xB199 PSR [x0400 CC |ZERO

Memo ddress x0250 Value x21D<

Mext ! Step | Finish | Continues | Clear All Breakpoints | Update Registers

-

AETE

e

®x024D xF0D21 ouT

x024E x1261 ADD RI1,R1,#1

w024F x0FFB BRNZP TRAP PUTS LOOP
B x0250 x21D04 TRAP_PUTS DOHNE LD RO,05 RO

0251 w23D4 LD R1,05 R1

0252 x2FD6 LD R7,05 R7

«0253 xC1CO RET

0254 x3FCF TRAP_IN 5T R7, TIN RT

<0255 xE038 LEA RO, TRAP IN MSG

k0256 xF022 PUTS

x0257 xF0D20 GETC

x0258 xF021 ouT

x0259 x31CB 5T RO,05 RO

ek N RS pe S Y R T (I A YT SR

File to Load

Reset LC-3 | Options |

CS270 - Spring 2013 - Colorado State University

|
.

Browse |
—

_ Quit |

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Simulator

Step: single stepping into routines
Finish: to the end of the routine
Similar buttons in the PC version

RO x0D000 R1 x7FFF RZ xD000 R3 x0000

R4 0000 RS %0000 R6 [x0000 R7 x0283

PC x3000 IR xB199 PSR x0400 CC ZERD
Memory Address x0250 Value x21D4

N-E::d:“! Ster..:_! Finish ' Continue | | Clear all Breakpoirts _L.Ipdate Registers |

x024D xF021
x0Z24E x1261
»024F x«0FFB

B x0250 x21D4 TRAP_PUTS DONE LD RO,05 RO

ouT
ADD R1,R1,#1
BERNZP TRAP PUTS LOOP

x0251
x0252
x0253
x0254
x0255
x0256
w0257
x0258
x0259

x23D4
¥2FD6
xC1CoO
¥3FCF
xE038
xF022
xFO20
xFO21
x31CEB

TRAP_IN

LD R1,05 R1
LD R7,05 R7 | =
RET

5T R7,TIN R7
LEA RO, TRAP_IN _MSG
PUTS
GETC
ouT
5T RO,05 RO

S e I P I AT

File to Load

Reset LC-3 |

TR (O R SR

Browse |

GS%EY-S—-éprinq 2013 - Colorado State?ﬁnl\prsity

22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Types of Errors

Q@ Syntax Errors

= You made a typing error that resulted in an illegal
operation.

= Not usually an issue with machine language, because
almost any bit pattern corresponds to a legal instruction.

= In high-level languages, these are often caught during
the translation from language to machine code.

Q@ Logic Errors

= Your program is legal, but wrong, so the results don't
match the problem statement.

= Trace the program to see what's really happening and
determine how to get the proper behavior.

Q@ Data Errors

= Input data is different than what you expected.
=« Test the program with a wide variety of inputs.

CS270 - Spring 2013 - Colorado State University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tracing the Program

Q@ Execute the program one piece at a time, examining register
and memory to see results at each step.
Q@ Single-Stepping
= EXxecute one instruction at a time.
= Tedious, but useful to help you verify each step of your program.

Q@ Breakpoints

= Tell the simulator to stop executing when it reaches
a specific instruction.

= Check overall results at specific points in the program.
@ Quickly execute sequences to get an overview of the behavior.
@ Quickly execute sequences that your believe are correct.

@ Watchpoints

= Tell the simulator to stop when a register or memory location changes
or when it equals a specific value.

= Useful when you don’t know where or when a value is changed.

CS270 - Spring 2013 - Colorado State University 24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tracing the Program

Q@ Single-Stepping

= Educational

= When you suspect the problem is within a sequential block
Q@ Breakpoints

= Set a breakpoint at the end of a sequential block in a loop or or
conditional block

M To see what the block is doing

CS270 - Spring 2013 - Colorado State University

25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 1: Multiply

@ This program is supposed to multiply the two
unsigned integers in R4 and RS5.

clear R2

x3200 0101010010100000

: x3201 0001010010000100
(LERY R D R x3202 0001101101111111
x3203 0000011111111101
x3204 1111000000100101

No
a Set R4 =10, R5 =3.

i Run program.
(" HALT) Result: R2 = 40, not 30

decrement R5

CS270 - Spring 2013 - Colorado State University 26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Multiply Program

Single-stepping

PC R2 | R4 | R5 / .
Breakpoint at branch (x3203)
PC and registers x3200 — 10 3
at the beginning x3201 0 10 3
of each instruction %3202 10 10 3 PC R2 | R4 | R5
%3203 10 10 2 x3203 10 10 2
x3201 | 10| 10 2 x3203 | 20 10
%3203 20 10 1 x3203 40 10 -1
x3201 | 20| 10 1 401 10] -1
x3202 30 10 1 *—Should stop looping here!
x3203 30 10 0
x3201 30 10 0 . .
Executing loop one time too many.
- 20| 10 0 Branch at x3203 should be based
x3203 | 40| 10| -1| on Z bitonly, not Z and P.
x3204 40 10 -1
(,Zélff - Squ'ZUIB_-]-CDIorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 2: Sum an Array of Numbers
@ This program is supposed to sum the numbers
stored in 10 locations beginning with x3100,
leaving the result in R1.

Ly x3000 0101001001100000

R2 = x3100 x3001 0101100100100000

v x3002 0001100100101010

o REZRLS MR x3003 0010010011111100
V x3004 0110011010000000
R4=R4-1 x3005 0001010010100001
x3006 0001001001000011

" x3007 0001100100111111
x3008 0000001111111011

- x3009 1111000000100101

< HALT >0527o - Spring 2013 - Colorado State University 28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Summing Program

Running the the data below yields R1 = x0024,
out the sum should be x8135. What happened?

Address | Contents Start single-stepping program...
x3100 x3107
PC |R1| R2 R4
x3101 x2819 3000
x3102 x0110 %3001 0
x3103 x0310 %3002 | O 0
x3104 x0110 x3003 | O 10
x3105 x1110 x3004 | 0|x3107| 10
x3106 x11B1 Should be x3100!
x3107 | x0019 ||| oading contents of M[x3100], not address.
x3108 x0007 Change opcode of x3003
x3109 x0004 from 0010 (LD) to 1110 (LEA).

CS270 - Spring 2013 - Colorado State University 29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Summing Program

LOOP

START

AND R1, R1, #0

AND R4, R4, #0
ADD R4, R4, #10
LD R2, START
LDR R3, R2, #0
ADD R2, R2, #1
ADD R1, R1, R3
ADD R4, R4, #-1
BRP LOOP
HALT

.FILL x3107

AND R1, R1, #0
AND R4, R4, #0
ADD R4, R4, #10
LEA R2, START

:> LOOP LDRR3, R2, #0
ADD R2, R2, #1
ADD R1, R1, R3
ADD R4, R4, #-1

BRP LOOP
HALT

START .FILL x3107

Loading contents of M[x3100], not address.
Change opcode of x3003
from 0010 (LD) to 1110 (LEA).

CS270 -

Spring 2013 - Colorado State University 30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 3: Looking for a 5

@ This program is supposed to set
RO=1 if there’s a 5 in one of ten
memory locations, starting at x3100.

@ Else, it should set RO to O.

RO =1, R1=-5 R3=10
R4 = x3100, R2 = M[R4] [

R2 =57

Yes

lNo

R4=R4+1
R3 = R3-1
R2 = M[R4]

——(HALT)

No

Yes

RO

I
o

x3000
x3001
x3002
x3003
x3004
x3005
x3006
x3007
x3008
x3009
x300A
x300B
x300C
x300D
x300E
X300F
x3010

0101000000100000
0001000000100001
0101001001100000
0001001001111011
0101011011100000
0001011011101010
0010100000001001
0110010100000000
0001010010000001
0000010000000101
0001100100100001
0001011011111111
0110010100000000
0000001111111010
0101000000100000
1111000000100101
0011000100000000

CS270 - Spring 2013 - Colorado State University

31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the Fives Program

@ Running the program with a 5 in location x3108

results in RO = 0, not . What happened?

ey —— Perhaps we dl_dn’t look at all the data?
S Put a breakpoint at x300D to see

%3100 9 how many times we branch back.
x3101 I PC RO | R2 | R3 R4
%3102 32 x300D 1 71 9] x3101
%3103 0 x300D 1| 32| 8| x3102

3104 = x300D 1 7 | x3103 | -
X o] o 7][x3103 E' rllt e
x3105 19 at el

though R3 > 0?
x3106 6 Branch uses condition code set by
x3107 13 loading R2 with M[R4], not by decrementing R3.
%3108 5 Swap x300B and x300C, or remove x300C and
branch back to x3007.

X3109 61 CS270 - Spring 2013 - Colorado State University 32

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example 4: Finding First 1 in a Word

@ This program is supposed to return (in R1) the bit
position of the first 1 in a word. The address of the word
IS In location x3009 (just past the end of the program). If
there are no ones, R1 should be set to —1.

R1=15
R2 = data x3000 0101001001100000
x3001 0001001001101111

@ Le x3002 1010010000000110
d x3003 0000100000000100

[decrement R1 x3004 0001001001111111
| shift R2 left one bit x3005 0001010010000010
x3006 0000100000000001

No 4@ x3007 0000111111111100
x3008 1111000000100101

M x3009 0011000100000000

< HALT j CS270 - Spring 2013 - Colorado State University 33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging the First-One Program

@ Program works most of the time, but if data Is
zero, it never seems to HALT.

PC | R1
x3007 | 14
x3007 | 13
x3007 | 12
x3007 | 11
x3007 | 10
x3007 9
x3007 8
x3007 7
x3007 6
x3007 5

SO Breakpoint at backwards branch (x3007)
x3007 | 4
x3007 | 3 If no ones, then branch to HALT
%3007 2 never occurs!
%3007 | 1 This is called an “|r_1f|n|te qup.”
Must change algorithm to either
x3007 | O :
T) (a) check for special case (R2=0), or
(b) exit loop iIf R1 < 0.
x3007 | -2
x3007 | -3
x3007 | -4
x3007 | -5

CS270 - Spring 2013 - Colorado State University

34

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Debugging: Lessons Learned

@ Trace program to see what’s going on.
= Breakpoints, single-stepping

@ When tracing, make sure to notice what's
really happening, not what you think should
happen.

= In summing program, it would be easy to not notice
that address x3107 was loaded instead of x3100.

Q@ Test your program using a variety of input data.

= In Examples 3 and 4, the program works for many (but not
all) data sets.

=« Be sure to test extreme cases (all ones, no ones, ...).

CS270 - Spring 2013 - Colorado State University 35

