Chapter 8
/O

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computing Layers

// ’——\\\
-
w //,
/ /,ﬁ)
e %

Problems

Devices

CS270 - Spring 2013 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/0. Connecting to Outside World

@ So far, we've learned how to:
= compute with values in registers
= |load data from memory to registers
= Store data from registers to memory

@ But where does data in memory come from?

@ And how does data get out of the system so that
humans can use it?

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/0. Connecting to the Outside World

@ Types of I/O devices characterized by:

= behavior: input, output, storage
@ input: keyboard, motion detector, network interface
@ output: monitor, printer, network interface
@ storage: disk, CD-ROM

= data rate: how fast can data be transferred?
» keyboard: 100 bytes/sec
 disk: 30 MB/s
e network: 1 Mb/s - 1 Gb/s

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/O Controller

@ Control/Status Registers

=« CPU tells device what to do -- write to control register
= CPU checks if task is done -- read status register

Q@ Data Registers

= CPU transfers data to/from device

Graphics Controller

CPU <+——p| Control/Status \

——p Output Data [

» display

Electronics

@ Device electronics
= performs actual operation

* pixels to screen, bits to disk, chars from keyboard

CS270 - Spring 2013 - Colorado State University

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Programming Interface

@ How are device registers identified?
= Memory-mapped vs. special instructions

@ How Is timing of transfer managed?
» Asynchronous vs. synchronous

@ Who controls transfer?

= CPU (polling) , device (interrupts), DMA Controller
(Direct memory transfer),

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Memory-Mapped vs. I/O Instructions

Q@ Instructions

= designate opcode(s) for I/O
= register and operation encoded in instruction

s 44 13 12 11 10 B 8 4 5} 5 4 3 2 i 0
I0 Device Op

‘ Memory)/ Keyboard Status Reg
@ Memory-mapped OXFOOO‘ /\
= assign a memory
address to each device register

= Use data movement instructions (LD/ST)
for control and data transfer

Address space
mapped to
170 device registers

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transfer Timing

@ |I/O events generally happen much slower
than CPU cycles.

@ Synchronous
= data supplied at a fixed, predictable rate
= CPU reads/writes every X cycles

@ Asynchronous

= data rate less predictable

=« CPU must synchronize with device,
so that it doesn’t miss data or write too quickly

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Transfer Control
@ Who determines when the next data transfer occurs?
@ <comparison example done on white board>

Q@ Polling

= CPU keeps checking status register until
new data arrives OR device ready for next data

= “Are we there yet? Are we there yet? Are we ...

Q@ Interrupts

= Device sends a special signal to CPU when
new data arrives OR device ready for next data

= CPU can be performing other tasks instead of polling
device.

= “Wake me when we get there.”

CS270 - Spring 2013 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3

@ Memory-mapped I/O (Table A.3)

Location |I/O Register Function
x EEOO Keyboard Status Bit [15] is one when keyboard has
(KBSR) received a new character.
Bits [7:0] contain the last character
XFEO2 |Keyboard Data (KBDR) typed on keyboard.
xFEO4 Display Status (DSR) Bit [15]_|s one when device ready
to display char on screen.

: Character written to bits [7:0] will
X FEO6 Display Parai BB} be displayed on scree[n. |

@ Asynchronous devices
= synchronized through status registers

@ Polling and Interrupts
= Interrupt details are discussed in Chapter 10

CS270 - Spring 2013 - Colorado State University 10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Input from Keyboard

@ When a character Is typed.:

= Its ASCII code is placed in bits [7:0] of KBDR
(bits [15:8] are always zero)

= the “ready bit” (KBSR[15]) Is set to one
= keyboard is disabled -- any typed characters will be

ignored 15 .) keyboard
B KBDR data

ready bit - N KBSR
@ When KBDR Is read:

« KBSR[15] Is set to zero
= keyboard is enabled

CS270 - Spring 2013 - Colorado State University 11

Copyright © The McGraw-Hill Companies, Inc

. Permission required for reproduction or display.

Basic Input Routine

NO

7

Polling]

YES

read
character

POLL LDl RO, KBSRPtr
BRzp POLL
LDI RO, KBDRPtr

KBSRPtr . FI LL xXFEOO
KBDRPtr . FILL xFEO2

l

CS270 - Spring 2013 - Colorado State University 12

16

GateMDR

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Simple Implementation: Memory-
Mapped Input

MDR

<—LD.MDR

A16

RW/ READ—‘L
A J

MAR <=LD.MAR

Address Control Logic
determines whether
MDR is loaded from

Memory or from KBSR/KBDR.

G
INMUX

/’16 INPUT
ADDR ¥ >
CONTROL MEMORY | KBSR| |KBDR]
LOGIC —
5 2

7
MEM.EN, READ

CS270 - Spring 2013 - Colorado State University 13

Copyright © The McGraw-Hill Companies,

Inc.

Permission required for reproduction or display.

Output to Monitor

@ When Monitor is ready to display another

character:

« the “ready bit” (DSR[15]) is set to one

15 8

7

0

v

1514

0

output data

DDR

ready bit I DSR

@ When data is written to Display Data Register:

« DSR[15] Is set to zero

= character in DDR[7:0] is displayed
| | | . . I

CS270 - Spring 2013 - Colorado State University 14

Copyright © The McGraw-Hill Companies, Inc

. Permission required for reproduction or display.

Basic Output Routine

NO

.

Polling

screen
ready?

YES

write

POLL

DSRPt r
DDRPE 1

LDI R1, DSRPtr
BRzp POLL
STI RO, DDRPtr

. FI LL xFEO4
. FI LL xFEOG6

character

l

CS270 - Spring 2013 - Colorado State University

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Simple Implementation: Memory-
Mapped Output

GateMDR 16
£16 '
MDR |[<LDMDR| MAR [<LDMAR
A
RW / WRITE
A16 oy X16 v 'OUTPUT
ADDR — o
/ \ ONTROL MEMORY DDR
T A LOGIC = DSR
2
//
A16 MEM.EN, WiTe
/ LD.DDR
Sets LD.DDR e
—
or selects .
DSR as input. K
SR as input INMUX

CS270 - Spring 2013 - Colorado State University 16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Keyboard Echo Routine

@ Usually, input character is also printed to screen.

= User gets feedback on character typed and knows Iits
ok to type the next character.

POLL1 LDl R0, KBSRPtr
BRzp POLL1
LDI RO, KBDRPtr
POLL2 LDl R1, DSRPtr

read

BRzp POLLZ2 character

STI RO, DDRPtr

screen
ready?

NO

KBSRPtr . FILL xFEOO
KBDRPtr . FlLL xFEO2
DSRPtr .FILL xFEO4 write
DDRPtr . FILL xFEO6 character

CS270 - Spring 2013 - Colorado State University ‘l' 17

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interrupt-Driven I/O

@ External device can:
(1)Force currently executing program to stop.
(2)Have the processor satisfy the device needs.
(3)Resume the program as if nothing happened.
@ Why?

=« Polling consumes a lot of cycles, especially for rare

events — these cycles can be used for more
computation.

« Example: Process previous input while collecting
current input. (See Example 8.1 in text, we did on
board.)

CS270 - Spring 2013 - Colorado State University 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interrupt-Driven I/O

@ To implement an interrupt mechanism, we need.:

= A way for the I/O device to signal the CPU that an
Interesting event has occurred.

= A way for the CPU to test if the interrupt signal Is set
and if its priority is higher than current program.

@ Generating Signal

« Software sets "interrupt enable" bit in device register.

= When ready and |E bits are set, interrupt is signaled.
Interrupt enable bit\\lmg :

ready bit -, I KB SR
} Interrupt signal

to processor

CS270 - Spring 2013 - Colorado State University

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Priority

@ Every instruction executes at a stated level of
urgency.
Q@ LC-3: 8 priority levels (PLO-PL7)
« Example:
@ Payroll program runs at PLO.
@ Nuclear power correction program runs at PL6.
« It's OK for PL6 device to interrupt PLO program,
but not the other way around.
@ Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Testing for Interrupt Signal

@ CPU looks at signal at end of the STORE phase.

Q@ If not set, continues to FETCH the next
Instruction.

Q If set, transfers control to interrupt service
routine. '

F
|
NO D
|

interrupt
signal?

Transfer to
ISR

More details in Chapter 10.

CS270 - Spring 2013 - Colorado State University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Full Implementation of LC-3 Memory-

y

MDR

Mapped I/O

; ;GateMDF{

<+— LD.MDR MAR

<—LD.MAR

R <+ MEMORY

MIOEN | I
J

ADDR.CTL.
LOGIC

— e = = — —

' IOUTPUT
|
KBDR DDR

MEM.EN <FH——

|

> KBSR

)(2

|NMU>§E

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

CS270 - Spring 2013 - Colorado State University

22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interrupt-Driven I/O (Part 2,Ch 10)

@ Interrupts were introduced in Chapter 8.
1. External device signals need to be serviced.
2. Processor saves state and starts service routine.

. When finished, processor restores state and
resumes program.

Interrupt is an unscripted subroutine call,
triggered by an external event.

« Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack.

* Now, we’re ready...

CS270 - Spring 2013 - Colorado State University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processor State
@ What state is needed to completely capture the
state of a running process?

Q@ Processor Status Register
= Privilege [15], Priority Level [10:8], Condition Codes [2:0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P | PL Nz P
@ Program Counter
= Pointer to next instruction to be executed.
Q@ Registers

= Temporary process state that’s not stored in memory.

CS270 - Spring 2013 - Colorado State University

24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Where to Save Processor State?

@ Can’t use registers.

=« Programmer doesn’t know when interrupt might occur,
so she can'’t prepare by saving critical registers.

= When resuming, need to restore state exactly as it was.

@ Memory allocated by service routine?

=« Must save state before invoking routine,
so we wouldn’t know where.

= Also, interrupts may be nested — that Is, an interrupt
service routine might also get interrupted!

Q@ Use a stack!
= Location of stack “hard-wired”.
= Push state to save, pop to restore.

CS270 - Spring 2013 - Colorado State University 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Supervisor Stack

@ A special region of memory used as the stack
for interrupt service routines.

= Initial Supervisor Stack Pointer (SSP) stored in
Saved.SSP.

= Another register for storing User Stack Pointer (USP):
Saved.USP.

@ Want to use R6 as stack pointer.
= So that our PUSH/POP routines still work.
@ When switching from User mode to Supervisor

mode (as result of interrupt), save R6 to
Saved.USP.

CS270 - Spring 2013 - Colorado State University 26

2ol

B LSS

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Invoking the Service Routine (Detalils)
If Priv =1 (user),

Saved.USP = R6, then R6 = Saved.SSP.

Push PSR and PC to Supervisor Stack.

Set PSR[15] = 0 (supervisor mode).

Set PSR[10:8] = priority of interrupt being serviced.

Set PSR[2:0] = 0.

Set MAR = x01v, where ' = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).
Load memory location (M[x01]) into MDR.

Set PC = MDR: now first instruction of ISR will be fetched.
Note: This all happens between

the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

CS270 - Spring 2013 - Colorado State University 27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Returning from Interrupt

@ Special instruction — RTI — that restores state.

15 314 13 12 11 10 8 8 7 6

5 4 3 2 1 B
RTI 1 0000000O0O0OOOGOGO OGO OO

1.

2.

3.

Q

Pop PC from supervisor stack:
(PC = M[R6]; R6 =R6 + 1)

Pop PSR from supervisor stack:
(PSR = M[R6]; R6 = R6 + 1)

If going back to user mode, need to restore User Stack Pointer:
(if PSR[15] = 1, R6 = Saved.USP)

RTI is a privileged instruction.
= Can only be executed in Supervisor Mode.
= If executed in User Mode, causes an exception.

CS270 - Spring 2013 - Colorado State University 28

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example (1)

Program A

Saved.SSP

[111]]
[TADD
I111]]
[111]]
sdil

PC| x3007

Executing ADD at location x3006 when Device B interrupts.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example (2)

Program A ISR for
Device B
X6 —>

111171 jw
11T | o [ADD =

R6—| x3007
P
[111]]

PC| x6200

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

CS270 - Spring 2013 - Colorado State University

30

[111]]

[1111]

R6—| x3007

PSR for A

[1111]

PC| x6203

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

x3006

Example (3)

Program A

X6

6202

ADD —

X6210

ISR for
Device B

>

AND

RTI

Executing AND at x6202 when Device C interrupts.

CS270 - Spring 2013 - Colorado State University

31

R6—

PC

X6203

PSR for B

x3007

PSR for A

[1111]

x6300

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

x3006

Example (4)

Program A

ADD

X6

6202

X6210

ISR for
Device B

>

AND

RTI

Push PSR and PC onto stack, then transfer to

Device C service routine (at x6300).

CS270 - Spring 2013 - Colorado State University

Xx6300

X6315

ISR for
Device C

~~>

RTI

32

R6—

PC

X6203

PSR for B

x3007

PSR for A

[1111]

X6203

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

x3006

Example (5)

Program A

ADD

X6

6202

X6210

ISR for
Device B

>

AND

<

RTI 6300

X631

Execute RTI at x6315; pop PC and PSR from stack.

CS270 - Spring 2013 - Colorado State University

ISR for
Device C

~~>

RTI

33

Saved.SSP

PC

X6203

PSR for B

x3007

PSR for A

[1111]

x3007

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

x3006

Example (6)

Program A

ADD

il

X6

6202

X62

ISR for

Device B
>

AND —

\ ISR for
Device C
RTI 6300 >
RTI

X631

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Exception: Internal Interrupt

@ When something unexpected happens

Inside the processor, it may cause an exception.

@ Examples:
= Privileged operation (e.g., RTI in user mode)
= Executing an illegal opcode
= Divide by zero

= Accessing an illegal address (e.g., protected system
memory)

@ Handled just like an interrupt
= Vector is determined internally by type of exception
= Priority is the same as running program

CS270 - Spring 2013 - Colorado State University

35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review and Study Questions

@ What is the danger of not testing the DSR
before writing data to the screen?

@ What is the danger of not testing the KBSR
before reading data from the keyboard?

@ What if the Monitor were a synchronous device,
e.g., we know that it will be ready 1 microsecond
after character is written.

=« Can we avoid polling? How?
= What are advantages and disadvantages?

CS270 - Spring 2013 - Colorado State University 36

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Review and Study Questions

@ Do you think polling is a good approach for other
devices, such as a disk or a network interface?

@ What is the advantage of using LDI/STI for
accessing device registers?

@ Which of the device registers in LC-3 can be written
to by CPU?

CS270 - Spring 2013 - Colorado State University 37

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Direct memory access (DMA)

Direct memory access (DMA) is a process in which an external
device takes over the control of system bus from the CPU.

DMA is for high-speed data transfer from/to mass storage
peripherals, e.g. harddisk drive, magnetic tape, CD-ROM, and
sometimes video controllers.

The basic idea of DMA is to transfer blocks of data directly between
memory andperipherals. The data don’t go through the
microprocessor but the data bus is occupied.

The transfer rate is limited by the speed of memory and peripheral
devices

CS270 - Spring 2013 - Colorado State University 38

Copyright © The aw-Hill Compan Inc. Permission required for reproduc or display.

BaS|c process of DMA

Sequence of events of a typical DMA process

Peripheral asserts one of the request pins.

Processor completes its current bus cycle and
enters into a HOLD state

Processor grants the right of bus control
asserting a grant signal via the same pin as the
request signal.

DMA operation starts

Upon completion of the DMA operation, the
peripheral asserts the request/grant pin again to
relinquish bus control.

CS270 - Spring 2013 - Colorado State University 39

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

DMA controller

A DMA controller interfaces with several peripherals that may
request DMA.

The controller decides the priority of simultaneous DMA requests
communicates with the peripheral and the CPU, and provides
memory addresses for data transfer.

DMA controller (DMAC) is in fact a special-purpose processor.
Normally it appears as part of the system controller chip-sets.

A DMAC is a multi-channel device. Each channel is dedicated to a
specific

peripheral device and capable of addressing a section of memory.

CS270 - Spring 2013 - Colorado State University

40

