
Chapter 8
I/O

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Spring 2013 - Colorado State University

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Spring 2013 - Colorado State University

I/O: Connecting to Outside World

So far, we’ve learned how to:
� compute with values in registers
� load data from memory to registers
� store data from registers to memory

But where does data in memory come from?
And how does data get out of the system so that
humans can use it?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4CS270 - Spring 2013 - Colorado State University

I/O: Connecting to the Outside World

Types of I/O devices characterized by:
� behavior: input, output, storage

input: keyboard, motion detector, network interface
output: monitor, printer, network interface
storage: disk, CD-ROM

� data rate: how fast can data be transferred?
• keyboard: 100 bytes/sec
• disk: 30 MB/s
• network: 1 Mb/s - 1 Gb/s

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

I/O Controller

Control/Status Registers
� CPU tells device what to do -- write to control register
� CPU checks if task is done -- read status register

Data Registers
� CPU transfers data to/from device

Device electronics
� performs actual operation

• pixels to screen, bits to disk, chars from keyboard

Graphics Controller
Control/Status

Output Data Electronics

CPU
display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

Programming Interface

How are device registers identified?
� Memory-mapped vs. special instructions

How is timing of transfer managed?
� Asynchronous vs. synchronous

Who controls transfer?
� CPU (polling) , device (interrupts), DMA Controller

(Direct memory transfer),

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

Memory-Mapped vs. I/O Instructions

Instructions
� designate opcode(s) for I/O
� register and operation encoded in instruction

Memory-mapped
� assign a memory

address to each device register
� use data movement instructions (LD/ST)

for control and data transfer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Spring 2013 - Colorado State University

Transfer Timing

I/O events generally happen much slower
than CPU cycles.
Synchronous
� data supplied at a fixed, predictable rate
� CPU reads/writes every X cycles

Asynchronous
� data rate less predictable
� CPU must synchronize with device,

so that it doesn’t miss data or write too quickly

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Spring 2013 - Colorado State University

Transfer Control
Who determines when the next data transfer occurs?
<comparison example done on white board>
Polling
� CPU keeps checking status register until

new data arrives OR device ready for next data
� “Are we there yet? Are we there yet? Are we …

Interrupts
� Device sends a special signal to CPU when

new data arrives OR device ready for next data
� CPU can be performing other tasks instead of polling

device.
� “Wake me when we get there.”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Spring 2013 - Colorado State University

LC-3
Memory-mapped I/O (Table A.3)

Asynchronous devices
� synchronized through status registers

Polling and Interrupts
� Interrupt details are discussed in Chapter 10

Location I/O Register Function

xFE00 Keyboard Status
(KBSR)

Bit [15] is one when keyboard has
received a new character.

xFE02 Keyboard Data (KBDR) Bits [7:0] contain the last character
typed on keyboard.

xFE04 Display Status (DSR) Bit [15] is one when device ready
to display char on screen.

xFE06 Display Data (DDR) Character written to bits [7:0] will
be displayed on screen.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Spring 2013 - Colorado State University

Input from Keyboard

When a character is typed:
� its ASCII code is placed in bits [7:0] of KBDR

(bits [15:8] are always zero)
� the “ready bit” (KBSR[15]) is set to one
� keyboard is disabled -- any typed characters will be

ignored

When KBDR is read:
� KBSR[15] is set to zero
� keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard
data

ready bitready bitready bitready bit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Spring 2013 - Colorado State University

Basic Input Routine

new
char?

read
character

YES

NO

Polling

POLL LDI R0, KBSRPtr
BRzp POLL
LDI R0, KBDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Spring 2013 - Colorado State University

Simple Implementation: Memory-
Mapped Input

Address Control Logic
determines whether
MDR is loaded from

Memory or from KBSR/KBDR.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Spring 2013 - Colorado State University

Output to Monitor

When Monitor is ready to display another
character:
� the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:
� DSR[15] is set to zero
� character in DDR[7:0] is displayed
� any other character data written to DDR is ignored

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Spring 2013 - Colorado State University

Basic Output Routine

screen
ready?

write
character

YES

NO

Polling

POLL LDI R1, DSRPtr
BRzp POLL
STI R0, DDRPtr

...

DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Spring 2013 - Colorado State University

Simple Implementation: Memory-
Mapped Output

Sets LD.DDR
or selects

DSR as input.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Spring 2013 - Colorado State University

Keyboard Echo Routine
Usually, input character is also printed to screen.
� User gets feedback on character typed and knows its

ok to type the next character.
new

char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr
BRzp POLL1
LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr
BRzp POLL2
STI R0, DDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02
DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Spring 2013 - Colorado State University

Interrupt-Driven I/O

External device can:
(1)Force currently executing program to stop.
(2)Have the processor satisfy the device needs.
(3)Resume the program as if nothing happened.

Why?
� Polling consumes a lot of cycles, especially for rare

events – these cycles can be used for more
computation.

� Example: Process previous input while collecting
current input. (See Example 8.1 in text, we did on
board.)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Spring 2013 - Colorado State University

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:
� A way for the I/O device to signal the CPU that an

interesting event has occurred.
� A way for the CPU to test if the interrupt signal is set

and if its priority is higher than current program.

Generating Signal
� Software sets "interrupt enable" bit in device register.
� When ready and IE bits are set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Spring 2013 - Colorado State University

Priority
Every instruction executes at a stated level of
urgency.
LC-3: 8 priority levels (PL0-PL7)
� Example:

Payroll program runs at PL0.
Nuclear power correction program runs at PL6.

� It’s OK for PL6 device to interrupt PL0 program,
but not the other way around.

Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Spring 2013 - Colorado State University

Testing for Interrupt Signal
CPU looks at signal at end of the STORE phase.
If not set, continues to FETCH the next
instruction.
If set, transfers control to interrupt service
routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
ISR

NO

YES

More details in Chapter 10.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Spring 2013 - Colorado State University

Full Implementation of LC-3 Memory-
Mapped I/O

Because of interrupt enable bits, status registers (KBSR/DSR)
must be written, as well as read.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23CS270 - Spring 2013 - Colorado State University

Interrupt-Driven I/O (Part 2,Ch 10)
Interrupts were introduced in Chapter 8.
1. External device signals need to be serviced.
2. Processor saves state and starts service routine.
3. When finished, processor restores state and

resumes program.

• Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack.

• Now, we’re ready…

Interrupt is an unscripted subroutine callunscripted subroutine callunscripted subroutine callunscripted subroutine call,

triggered by an external event.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24CS270 - Spring 2013 - Colorado State University

Processor State
What state is needed to completely capture the
state of a running process?
Processor Status Register
� Privilege [15], Priority Level [10:8], Condition Codes [2:0]

Program Counter
� Pointer to next instruction to be executed.

Registers
� Temporary process state that’s not stored in memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25CS270 - Spring 2013 - Colorado State University

Where to Save Processor State?
Can’t use registers.
� Programmer doesn’t know when interrupt might occur,

so she can’t prepare by saving critical registers.
� When resuming, need to restore state exactly as it was.

Memory allocated by service routine?
� Must save state before invoking routine,

so we wouldn’t know where.
� Also, interrupts may be nested – that is, an interrupt

service routine might also get interrupted!

Use a stack!
� Location of stack “hard-wired”.
� Push state to save, pop to restore.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26CS270 - Spring 2013 - Colorado State University

Supervisor Stack

A special region of memory used as the stack
for interrupt service routines.
� Initial Supervisor Stack Pointer (SSP) stored in

Saved.SSP.
� Another register for storing User Stack Pointer (USP):

Saved.USP.

Want to use R6 as stack pointer.
� So that our PUSH/POP routines still work.

When switching from User mode to Supervisor
mode (as result of interrupt), save R6 to
Saved.USP.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27CS270 - Spring 2013 - Colorado State University

Invoking the Service Routine (Details)
1. If Priv = 1 (user),

Saved.USP = R6, then R6 = Saved.SSP.
2. Push PSR and PC to Supervisor Stack.
3. Set PSR[15] = 0 (supervisor mode).
4. Set PSR[10:8] = priority of interrupt being serviced.
5. Set PSR[2:0] = 0.
6. Set MAR = x01vv, where vv = 8-bit interrupt vector

provided by interrupting device (e.g., keyboard = x80).
7. Load memory location (M[x01vv]) into MDR.
8. Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28CS270 - Spring 2013 - Colorado State University

Returning from Interrupt
Special instruction – RTI – that restores state.

1. Pop PC from supervisor stack:
(PC = M[R6]; R6 = R6 + 1)

2. Pop PSR from supervisor stack:
(PSR = M[R6]; R6 = R6 + 1)

3. If going back to user mode, need to restore User Stack Pointer:
(if PSR[15] = 1, R6 = Saved.USP)

RTI is a privileged instruction.
� Can only be executed in Supervisor Mode.
� If executed in User Mode, causes an exception.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29CS270 - Spring 2013 - Colorado State University

Example (1)

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

x3007PC

Program A

ADDx3006

Executing ADD at location x3006 when Device B interrupts.

Saved.SSP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30CS270 - Spring 2013 - Colorado State University

Example (2)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6200PC

R6

Program A

ADDx3006

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

x6200

ISR for
Device B

x6210 RTI

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31CS270 - Spring 2013 - Colorado State University

Example (3)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6203PC

R6

Program A

ADDx3006

Executing AND at x6202 when Device C interrupts.

x6200

ISR for
Device B

ANDx6202

x6210 RTI

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32CS270 - Spring 2013 - Colorado State University

Example (4)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6300PC

R6

Program A

ADDx3006

x6200

ISR for
Device B

ANDx6202

ISR for
Device C

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

x6300

x6315 RTI

x6210 RTI

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33CS270 - Spring 2013 - Colorado State University

Example (5)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6203PC

R6

Program A

ADDx3006

x6200

ISR for
Device B

ANDx6202

ISR for
Device C

Execute RTI at x6315; pop PC and PSR from stack.

x6300

x6315 RTI

x6210 RTI

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34CS270 - Spring 2013 - Colorado State University

Example (6)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x3007PC

Program A

ADDx3006

x6200

ISR for
Device B

ANDx6202

ISR for
Device C

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

x6300

x6315 RTI

x6210 RTI

Saved.SSP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35CS270 - Spring 2013 - Colorado State University

Exception: Internal Interrupt

When something unexpected happens
inside the processor, it may cause an exception.
Examples:
� Privileged operation (e.g., RTI in user mode)
� Executing an illegal opcode
� Divide by zero
� Accessing an illegal address (e.g., protected system

memory)

Handled just like an interrupt
� Vector is determined internally by type of exception
� Priority is the same as running program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36CS270 - Spring 2013 - Colorado State University

Review and Study Questions

What is the danger of not testing the DSR
before writing data to the screen?
What is the danger of not testing the KBSR
before reading data from the keyboard?
What if the Monitor were a synchronous device,
e.g., we know that it will be ready 1 microsecond
after character is written.
� Can we avoid polling? How?
� What are advantages and disadvantages?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37CS270 - Spring 2013 - Colorado State University

Review and Study Questions

Do you think polling is a good approach for other
devices, such as a disk or a network interface?
What is the advantage of using LDI/STI for
accessing device registers?
Which of the device registers in LC-3 can be written
to by CPU?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Direct memory access (DMA)

Direct memory access (DMA) is a process in which an external
device takes over the control of system bus from the CPU.

DMA is for high-speed data transfer from/to mass storage
peripherals, e.g. harddisk drive, magnetic tape, CD-ROM, and
sometimes video controllers.

The basic idea of DMA is to transfer blocks of data directly between
memory andperipherals. The data don’t go through the
microprocessor but the data bus is occupied.

The transfer rate is limited by the speed of memory and peripheral
devices

38CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic process of DMA

Sequence of events of a typical DMA process
• Peripheral asserts one of the request pins.
• Processor completes its current bus cycle and

enters into a HOLD state
• Processor grants the right of bus control

asserting a grant signal via the same pin as the
request signal.

• DMA operation starts
• Upon completion of the DMA operation, the

peripheral asserts the request/grant pin again to
relinquish bus control.

39CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

DMA controller

• A DMA controller interfaces with several peripherals that may
request DMA.

• The controller decides the priority of simultaneous DMA requests
communicates with the peripheral and the CPU, and provides
memory addresses for data transfer.

• DMA controller (DMAC) is in fact a special-purpose processor.
Normally it appears as part of the system controller chip-sets.

• A DMAC is a multi-channel device. Each channel is dedicated to a
specific

• peripheral device and capable of addressing a section of memory.

40CS270 - Spring 2013 - Colorado State University

