
Back to Chapters 13,12

Original slides from Gregory Byrd, North
Carolina State University

Modified by Y. Malaiya

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Binary Joke

There are only 10 types of people in the world:
those who understand binary, and those who
don't.
The Collegian The Strip Club editor (April 4, 2013) is apparently not among those who understand.

2CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Spring 2013 - Colorado State University

Implementing Functions: Overview
Activation record (stack frame)
� information about each function,

including arguments and local variables
� stored on run-time stack

Calling function

push new activationpush new activationpush new activationpush new activation

recordrecordrecordrecord

copy values intocopy values intocopy values intocopy values into

argumentsargumentsargumentsarguments

call functioncall functioncall functioncall function

get result from stackget result from stackget result from stackget result from stack

Called function

execute codeexecute codeexecute codeexecute code

put result input result input result input result in

activation recordactivation recordactivation recordactivation record

pop activation recordpop activation recordpop activation recordpop activation record

from stackfrom stackfrom stackfrom stack

returnreturnreturnreturn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4CS270 - Spring 2013 - Colorado State University

Run-Time Stack
Recall that local variables are stored
on the run-time stack in an activation record
Stack Pointer (R6) is a pointer to the next free
location in the stack, and is used to push and
pop values on and off the stack.
Frame pointer (R5) is a pointer to the beginning
of a region of the activation record that stores
local variables for the current function
When a new function is called, its activation
record is pushed on the stack; when it returns,
its activation record is popped off of the stack.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

Run-Time Stack

main

Memory

R6

Watt

Memory

R6

main

Memory

main

Before callBefore callBefore callBefore call During callDuring callDuring callDuring call After callAfter callAfter callAfter call

R5

R5

R6

R5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

Activation Record
int NoName(int a, int b)
{

int w, x, y;
.
.
.
return y;

}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

4
5
0
-1
-2

NoName
NoName
NoName
NoName
NoName

y

x

w

dynamic link

return address

return value

a

b

bookkeepingbookkeepingbookkeepingbookkeeping

localslocalslocalslocals

argsargsargsargs

R5

Symbol
table

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

Activation Record Bookkeeping

Return value
� space for value returned by function
� allocated even if function does not return a value

Return address
� save pointer to next instruction in calling function
� convenient location to store R7 in case another

function (JSR) is called

Dynamic link
� caller’s frame pointer
� used to pop this activation record from stack

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back to Chap 13

Let’s see that again in LC-3 ..

8CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-9

If-else

if (condition)
action_if;

else
action_else;

condition

action_if action_else

T F

Else allows choice between
two mutually exclusive actions without re-testing condition.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-10

Generating Code for If-Else
if (x)
{

y++;
z--;

}

else {
y--;
z++;

}

LDR R0, R5, #0
BRz ELSE
; x is not zero
LDR R1, R5, #-1 ; incr y
ADD R1, R1, #1
STR R1, R5, #-1
LDR R1, R5, #-2 ; decr z
ADD R1, R1, #-1
STR R1, R5, #-2
JMP DONE ; skip else code

; x is zero
ELSE LDR R1, R5, #-1 ; decr y

ADD R1, R1, #-1
STR R1, R5, #-1
LDR R1, R5, #-2 ; incr z
ADD R1, R1, #1
STR R1, R5, #-2

DONE ... ; next statement

Symbol table

Name Type Offset
x int 0 main
y int -1 main
z int -2 main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-11

While

while (test)
loop_body;

test

loop_body

T

F

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-12

Generating Code for While
x = 0;
while (x < 10) {

printf(“%d ”, x);
x = x + 1;

}

AND R0, R0, #0
STR R0, R5, #0 ; x = 0
; test

LOOP LDR R0, R5, #0 ; load x
ADD R0, R0, #-10
BRzp DONE
; loop body
LDR R0, R5, #0 ; load x
...
<printf>
...
ADD R0, R0, #1 ; incr x
STR R0, R5, #0
JMP LOOP ; test again

DONE ; next statement

Symbol table

Name Type Offset
x int 0 main
y int -1 main
z int -2 main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-13

For

for (init; end-test; re-init)
statement

init

test

loop_body

re-init

F

T

Executes loop body as long as
test evaluates to TRUE (non-zero).
Initialization and re-initialization
code includedin loop statement.

Note: Test is evaluated before executing loop body.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13-14

Generating Code for For
for (i = 0; i < 10; i++)

printf(“%d ”, i);

; init
AND R0, R0, #0
STR R0, R5, #0 ; i = 0
; test

LOOP LDR R0, R5, #0 ; load i
ADD R0, R0, #-10
BRzp DONE
; loop body
LDR R0, R5, #0 ; load i
...
<printf>
...
; re-init
ADD R0, R0, #1 ; incr i
STR R0, R5, #0
JMP LOOP ; test again

DONE ; next statement

This is the same
as the while example!

Symbol table

Name Type Offset
i int 0 main
y int -1 main
z int -2 main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back to Chap 12

Let’s see that again in LC-3 ..

15CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-16

Symbol Table

Like assembler, compiler needs to know information
associated with identifiers

� in assembler, all identifiers were labels
and information is address

Compiler keeps more information
Name (identifier)
Type
Location in memory
Scope

Name Type Offset Scope

amount
hours
minutes
rate
seconds
time

int
int
int
int
int
int

0
-3
-4
-1
-5
-2

main
main
main
main
main
main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-17

Local Variable Storage

Local variables are stored in an
activation record, also known as a stack frame.

Symbol table “offset” gives the
distance from the base of the frame.
� R5 is the frame pointer – holds address

of the base of the current frame.
� A new frame is pushed on the

run-time stack each time a block is entered.
� Because stack grows downward,

base is the highest address of the frame,
and variable offsets are <= 0.

seconds

minutes

hours

time

rate

amountR5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-18

Allocating Space for Variables
Global data section
� All global variables stored here

(actually all static variables)
� R4 points to beginning

Run-time stack
� Used for local variables
� R6 points to top of stack
� R5 points to top frame on stack
� New frame for each block

(goes away when block exited)

Offset = distance from beginning
of storage area
� Global: LDR R1, R4, #4
� Local: LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6

R5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-19

Variables and Memory Locations

In our examples,
a variable is always stored in memory.

When assigning to a variable,
must store to memory location.

A real compiler would perform code
optimizations
that try to keep variables allocated in registers.
Why?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-20

Example: Compiling to LC-3
#include <stdio.h>
int inGlobal;

main()
{

int inLocal; /* local to main */
int outLocalA;
int outLocalB;

/* initialize */
inLocal = 5;
inGlobal = 3;

/* perform calculations */
outLocalA = inLocal++ & ~inGlobal;
outLocalB = (inLocal + inGlobal) - (inLocal - inGlobal);

/* print results */
printf("The results are: outLocalA = %d, outLocalB = %d\n",

outLocalA, outLocalB);
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-21

Example: Symbol Table

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-22

Example: Code Generation

; main

; initialize variables

AND R0, R0, #0
ADD R0, R0, #5 ; inLocal = 5
STR R0, R5, #0 ; (offset = 0)

AND R0, R0, #0
ADD R0, R0, #3 ; inGlobal = 3

STR R0, R4, #0 ; (offset = 0)
Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-23

Example (continued)
; first statement:
; outLocalA = inLocal++ & ~inGlobal;

LDR R0, R5, #0 ; get inLocal
ADD R1, R0, #1 ; increment
STR R1, R5, #0 ; store

LDR R1, R4, #0 ; get inGlobal
NOT R1, R1 ; ~inGlobal
AND R2, R0, R1 ; inLocal & ~inGlobal
STR R2, R5, #-1 ; store in outLocalA

; (offset = -1)

Name Type Offset Scope
inGlobal int 0 global
inLocal int 0 main
outLocalA int -1 main
outLocalB int -2 main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12-24

Example (continued)
; next statement:
; outLocalB = (inLocal + inGlobal)
; - (inLocal - inGlobal);

LDR R0, R5, #0 ; inLocal
LDR R1, R4, #0 ; inGlobal
ADD R0, R0, R1 ; R0 is sum
LDR R2, R5, #0 ; inLocal
LDR R3, R5, #0 ; inGlobal
NOT R3, R3
ADD R3, R3, #1
ADD R2, R2, R3 ; R2 is difference
NOT R2, R2 ; negate
ADD R2, R2, #1
ADD R0, R0, R2 ; R0 = R0 - R2
STR R0, R5, #-2 ; outLocalB (offset = -2)

Name Type Offset Scope
inGlobal int 0 global
inLocal int 0 main
outLocalA int -1 main
outLocalB int -2 main

