Back to Chapters 13,12

Original slides from Gregory Byrd, North
Carolina State University

Modified by Y. Malaiya

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Binary Joke

@ There are only 10 types of people in the world:
those who understand binary, and those who
don't.

@ The Collegian The Strip Club editor (April 4, 2013) is apparently not among those who understand.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Implementing Functions: Overview

@ Activation record (stack frame)

= Information about each function,
Including arguments and local variables

= Stored on run-time stack
Calling function

push new activation Called function

record

copy values into /vexecute che
arguments put resultin

call function / activation record

— pop activation record
get result from stack | ———_ from stack
return

CS270-Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Run-Time Stack

@ Recall that local variables are stored
on the run-time stack in an activation record

Q@ Stack Pointer (R6) Is a pointer to the next free

ocation in the stack, and is used to push and

pop values on and off the stack.

@ Frame pointer (R5) Is a pointer to the beginning
of a region of the activation record that stores
local variables for the current function

@ When a new function is called, its activation
record Is pushed on the stack; when it returns,
Its activation record is popped off of the stack.

CS270 - Spring 2013 - Colorado State University

Memory

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Run-Time Stack

« RO

. main

“ R5

Before call

Memory

1

«— RO

Wttt |

«— R5

—— main]

During call

Memory

1

« RO

. main

“ R5

After call

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

@ int NoName(int a, int b)

{

int w, X, Y,
R5
return y; bookkeeping
Name | Type Offset | Scope
a int 4 NoName
b int 5 NoName
W int 0 NoName
X int -1 NoName
Yy int -2 NoName

Activation Record

y

X

e — W

dynamic link

return address

return value

d

b

Symbol
table

CS270 - Spring 2013 - Colorado State University

locals

args

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Record Bookkeeping

Q@ Return value

= space for value returned by function

= allocated even if function does not return a value
Q@ Return address

= Save pointer to next instruction in calling function

= convenient location to store R7 In case another
function (JSR) is called

@ Dynamic link
= caller’'s frame pointer
= used to pop this activation record from stack

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back to Chap 13

Q@ Let's see that again in LC-3 ..

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

If-else

T F
@I f (condition)
action iIf;
el se ' |
acti on el se: action_if action_else

allows choice between
two mutually exclusive actions without re-testing condition.

13-9

{

}

y++;
Z- -

Qelse {

y--,
Z++:

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Symbol table

Name

Type

Offset

X

int

(

int

nain
ain

N |

int

ain

Generating Code for If-Else
QI f (X)

LDR RO, R5, #0
BRz ELSE

* X IS not zero
LDR R1, R5, #-1
ADD R1,R1, #1
STR R1, R5, #-1
LDR R1, R5, #-2
ADD R1, R1, #1
STR R1, R5, #-2

, Incry

- decr z

JMP DONE : skip else code
' X IS zero
ELSE LDR R1, R5, #1 - decry
ADD R1, R1, #-1
STR R1, R5, #-1
LDR R1, R5, #-2 incr z

ADD R1, R1, #1
STR R1, R5, #-2

DONE next statement

13-10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

While

@while (test)
| oop_body;

T

loop body

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

13-11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Generating Code for While

X =0;
while (x < 10) {
printf(“%d ”, X);

X=X+1;
}
Symbol table
Name Type | Offset
X int Q main
I

AND RO, RO, #0
STR RO, R5, #0 ;X =0
; test

LOOP LDR RO, R5, #0 ; load x

DONE

ADD RO, RO, #-10

BRzp DONE

, loop body

LDR RO, R5, #0 ; load x

<printf>

ADD RO, RO, #1 ;incr x
STR RO, R5, #0

JMP LOOP : test again

; next statement

13-12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

For 1

init
@for (init; end-test; re-in||‘[‘)
st at enent

Executes loop body as long as e
test evaluates to TRUE (non-zero).

Initialization and re-initialization Y
code includedin loop statement. | re-init

Note: Test is evaluated before executing loop body.

13-13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Generating Code for For
for (i = 0; i < 10; i++)
printf(“%d ", 1);

Symbol table

Name

Type

Offset

int

0

m

ain

NIt

AND RO, RO, #0

STR RO, R5, #0 =0
. test

LOOP LDR RO, R5, #0 ; load |

DONE

ADD RO, RO, #-10

BRzp DONE

; loop body

LDR RO, R5, #0 ; load |

<printf>

; re-init

ADD RO, RO, #1 incr |
STR RO, R5, #0

JMP LOOP . test again

; next statement e

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Back to Chap 12

Q@ Let's see that again in LC-3 ..

CS270 - Spring 2013 - Colorado State University

15

© © © © ¢

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Symbol Table

Like assembler, compiler needs to know information
associated with identifiers

In assembler, all identifiers were labels

and information is address

Compiler keeps more information

Name (identifier)
Type
Location in memory
Scope

Name Type Offset | Scope
amount int 0 main
hours int -3 main
minutes int -4 main
rate int -1 main
seconds int -5 main
time int -2 main

12-16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Local Variable Storage

@ Local variables are stored In an
activation record, also known as a stack frame.

@ Symbol table “offset” gives the se_cort\ds
distance from the base of the frame. e

= R5 Is the frame pointer — holds address time

of the base of the current frame. rate
R5— amount

= A new frame is pushed on the
run-time stack each time a block is entered.

= Because stack grows downward,
base is the highest address of the frame,
and variable offsets are <= 0. 12-17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Allocating Space for Variables

@ Global data section

= All global variables stored here
(actually all static variables)

= R4 points to beginning

@ Run-time stack
= Used for local variables
= R6 points to top of stack
= R5 points to top frame on stack

= New frame for each block
(goes away when block exited)

@ Offset = distance from beginning

of storage area
= Global: LDR R1, R4, #4
= Local: LDR R2, R5, #-3

0x0000

global data

OXFFFF

12-18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Variables and Memory Locations

@ In our examples,
a variable is always stored in memory.

@ When assigning to a variable,
must store to memory location.

@ A real compiler would perform code
optimizations
that try to keep variables allocated in registers.
@ Why?

12-19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Compiling to LC-3

#i ncl ude <stdi o. h>
i nt 1 nd obal ;

mai n()

{

i nt i nLocal: /* local to main */
I nt out Local A;
I nt out Local B;

[* initialize */
I nLocal = 5;
i nd obal = 3;

/* performcal cul ati ons */
out Local A = inLocal ++ & ~i n3 obal ;
out Local B = (inLocal + inGobal) - (inLocal - indobal);

/[* print results */
printf("The results are: outlLocal A = %, outlLocal B = %l\n"
out Local A, out Local B);

12-20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: Symbol Table

Name Type Offset Scope
InGlobal Int 0 global
inLocal int 0 main
outLocalA int -1 main
outLocalB Int -2 main

12-21

Copyright © The McGraw-Hill Companies, Inc.

Pe

rmission required for reproduction or display.

Example: Code Generation

Q@ . main

@ : Initiallze vari abl es

Q AND RO, RO, #0
ADD RO, RO, #5 ; InlLocal
STR RO, R5, #0 ; (offset
AND RO, RO, #0
ADD RO, RO, #3 : 1 nd obal
STR RO, R4, #0 : (offset

Name Type Offset Scope

inGlobal int 0 glopal

inLocal int 0 m4gin

outLocalA int -1 majn

outLocalB int -2 majn

5
0)

= 3
0)

12-22

Copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

Name Type Offset Scope
inGlobal int 0 glopal
Exam inLocal int 0 mdin
outLocalA int -1 majn
o fl rst statenment outLocalB int -2 majn
Q@ ; outLocal A = inLocal ++ & ~1 n3 obal ;
Q LDR RO, R5, #0 ; get InlLocal
ADD R1, RO, #1 : I ncrenent

STR RlL, RS, #0 : store

LDR R1, R4, #0 ; get |1 nd obal

NOT R1, R1 * ~1 nd@ obal

AND R2, RO, R1 : inLocal & ~1nd obal

STR R2, R5, #1 ; store in outlLocal A
, (offset = -1)

12-23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example (continued)

Q@ ; next statenent:

@ ; outlLocalB = (i nLocal + I ndobal)
; - (1 nLocal - 1 ndobal);
Q LDR RO, R5, #0 : I nLocal
LDR R1, R4, #0 : | nd obal
ADD RO, RO, R1 : RO is sum
LDR R2, R5, #0 : I nLocal
LDR R3, R5, #0 : | nd obal
NOT R3, R3
ADD R3, R3, #1
ADD R2, R2, R3 : R2 is difference
NOT R2, R2 , nhegate
ADD R2, R2, #1
ADD RO, RO, R2 : RO = RO - R2
STR RO, R5, #-2 ; outlLocal B (of fset
Name Type Offset Scope
inGlobal int 0 glopal
inLocal int 0 mdin
outLocalA int -1 majn
outLocalB int -2 majn

- 2)

12-24

