Chapter 16
Pointers and Arrays

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pointers and Arrays

@ We've seen examples of both in our LC-3
programs; now we'll see them in C.

Q@ Pointer
= Address of a variable in memory
= Allows us to indirectly access variables

* In other words, we can talk about its address
rather than its value

Q Array
= A list of values arranged sequentially in memory
« Example: a list of telephone numbers

= Expression a[4] refers to the 5th element of the array a

CS270 - Spring 2013 - Colorado State University 2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Address vs. Value
@ Sometimes we want to deal with the address

of a memory location,
rather than the value it contains.

@ Recall example from Chapter 6:

address

value

|

adding a column of numbers.

x3107

= R2 contains address of first location. 2 /

X2819

x3100 -
= Read value, add to sum, and

x0110

x0310

Increment R2 until all numbers

x0100

have been processed.

x1110

x11B1

@ R2 Is a pointer -- it contains the

x0019

address of data we're interested In.

CS270 - Spring 2013 - Colorado State University

x3100
x3101
x3102
x3103
x3104
x3105
x3106
x3107

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Another Need for Addresses

@ Consider the following function that's supposed
to swap the values of its arguments.

void Swap(int firstVal, int secondVal)

{
Int tempVal = firstVal;
firstVal = secondVal,
secondVal = tempVal,
}

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Executing the Swap Function

before call after call
3 tempVal | 1hese values
Swap j changed...
. /
R6 — 3 firstVal 4 firstVal
4 secondVal L 3 secondVal
4 valueB 4 4 valueB
3 valueA 3 valueA "~
main < ...but these
did not.
-

Swap needs addresses of variables outside its own
activation record.

CS270 - Spring 2013 - Colorado State University 5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pointers in C

@ C has explicit syntax for representing addresses
— we can talk about and manipulate pointers
as variables and in expressions.

= Declaration
Int *p; [* p Is a pointer to an int */
float *p; [* p Is a pointer to an float */

@ A pointer in C points to a particular data type:
Int* , double* , char* , etc.

« Operators
*p -- returns the value pOinted by P (“dereferencing”)
&z --returns the address of variable z

CS270 - Spring 2013 - Colorado State University 6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example

Int I;

Int *ptr; store the value 4 into the memory location
associated with i

| = 4;

store the address of i into the

ptr = &| / memory location associated with ptr
*ptr = *ptr + 1;

\ read the contents of memory

at the address stored in ptr

store the result into memory
at the address stored in ptr

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permis required for reproduction or display.

Example LC-3 Code

; 1 1S 1st local (offset 0), ptr is 2nd (offset -1)

=4

AND RO,RO0,#0
ADD RO,RO0,#4
STR RO,R5,#0
, ptr = &i;

ADD RO,R5,#0
STR RO,R5,#-1
; *ptr =*ptr + 1;
LDR RO,R5,#-1
LDR R1,R0,#0
ADD R1,R1,#1
STR R1,R0,#0

' clear RO
, put4in RO
- store in |

; RO =R5 + 0 (&i)
, store In ptr

; RO = mem[R5 — 1] (ptr)
, load contents (*ptr)
;*ptr + 1

, store contents (*ptr)

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pointers as Arguments

@ Passing a pointer into a function allows the
function to read/change memory outside its
activation record.

void NewSwap(int *firstVal, int *secondVal)

{

iInt tempVal = *firstVal,

*firstVal = *secondVal:

*secondVal =tempVal; Arguments are
integer pointers.

J Caller passes addresses

To call: of variables that it wants
NewSwap(&valueA, &valueB); function to change

CS270 - Spring 2013 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Passing Pointers to a Function

@ main() wants to swap the values of valueA and
valueB, so It passes the addresses to NewSwap:

NewSwadé& valueA , & valueB);
@ Code for passing arguments:

ADD RO,R5,#-1 ; &valueB

ADD R6,R6,#-1 : push R6 —»

XEFFA

STR RO,R6,#0 ; it

XEFF9

ADD RO,R5,#0 ; &valueA

R5 —

ADD R6,R6,#-1 : push

STR RO,R6,#0 ; it

XEFFD

CS270 - Spring 2013 - Colorado State University

tempVal

firstVal
secondVal
valueB
valueA

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Code Using Pointers
@ Inside the NewSwap routine

, Int tempVal = *firstVal, RG —» 3
LDR RO,R5,#4 ;: RO=xEFFA RS~
LDR R1,R0,#0 ; R1=M[XEFFA]=3
STR R1,R5# O ;tempVal=3 <EEFA
. *firstVal = *secondVal; XEFF9
LDR R1,R5,#5 ; R1=xEFF9 23

LDR R2,R1,#0 ; R 2:|\/|[XEFF9]:4/7k4
STR R2,R0,#0 ; M[XEFFA]=4

, *secondVal =tempVal; xEFFD

LDR R2,R5#0 ; R2=3
STR R2,R1,#0 : M[XEFF9]=3

CS270 - Spring 2013 - Colorado State University

tempVal

firstVal
secondVal
valueB
valueA

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Null Pointer

@ Sometimes we want a pointer that points to
nothing.

@ In other words, we declare a pointer, but we're
not ready to actually point to something yet.
Int *p;
P = NULL; [* p 1s a null pointer */

@ NULL is a predefined macro that contains a
value that a non-null pointer should never hold.

= NULL =usually equals O, because address O is not a
legal address for most programs on most platforms.

CS270 - Spring 2013 - Colorado State University

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Using Arguments for Results

@ Pass address of variable where you want result
stored
= useful for multiple results
« Example:
 return value via pointer
 return status code as function result

@ This solves the mystery of why ‘&’ with
argument to scanf:

scanf("%d ", &dataln); ~

read a decimal integer
and store in dataln

CS270 - Spring 2013 - Colorado State University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Syntax for Pointer Operators
Q@ Declaring a pointer
type *var; or type~*var;

= Either of these work -- whitespace doesn't matter
= Example: int* (integer pointer), char* (char pointer), etc.

Q@ Creating a pointer
&var

= Must be applied to a memory object, such as a variable (not &3)

Q@ Dereferencing
= Can be applied to any expression. All of these are legal:
*var [/ contents of memory pointed to by var
**var [/ contents of memory location pointed to
// by memory location pointed to by var

CS270 - Spring 2013 - Colorado State University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example using Pointers

@ IntDivide performs both integer division and

remainder, returning results via pointers.

= Returns -1 if divide by zero, else 0
int IntDivide(int X, int y, int *quoPtr, int *remPt r;
main()

{

int dividend, divisor; /* numbers for divide op */
Int quotient, remainer; /* results */

Int error;
/[* ... Input code removed ... */

error = IntDivide(dividend, divisor,
"ient, &remainder);

/[* ... Remaining code removed ... */

CS270 - Spring 2013 - Colorado State University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C Code for IntDivide

Int IntDivide(int X, int y, Int *quoPtr, int *remPt

{
if (y '=0)
{
quoPtr = x /y; [quotient in *quoPtr */
remPtr =x % y; [remainder in *remPtr */
return O;
}
else
return —1;
}

CS270 - Spring 2013 - Colorado State University

16

Copyright © The McGraw-Hill Compan Perm required for reproduction or display.

Arrays

@ How do we allocate a group of memory
locations?

= character string

iInt numo;
int num1;

= table of numbers inE nume:
@ How about this? / int num3;
@ Not too bad, but...

= What if there are 100 numbers?

= how do we write a loop to process each number?
@ Fortunately, C gives us a better way -- the array.
Int num[4];

= Declares a sequence of four integers, referenced by:
num[0] , num[l] , num[2] , num[3] .

CS270 - Spring 2013 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Array Syntax

Q@ Declaration
type variable [num_elements |,

f N

number of elements must be

all array elements S
known at compile-time

are of the same type

Q@ Array Reference
variable [index J;

\

I-th element of array (starting with zero);
no limit checking at compile-time or run-time

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Array as a Local Variable

@ Array elements are allocated

as part of the activation

record. B

Int grid[10]; \

@ First element (grid[0])

IS at lowest address

of allocated space.

Q@ If grid s first variable

allocated, then R5 will point to

grid[9]

CS270 - Spring 2013 - Colorado State University

grid
grid
grid
grid
grid
grid
grid
grid
grid
grid

OO NG WN RO

19

Copyright © The McGraw-Hill Compan Inc. Permission required for reproduction or display.

LC-3 Code for Array References
;X =grd[3] + 1

ADD RO,R5,#-9

LDR R1,R0,#3

ADD R1,R1,#1

STR R1,R5,#-10

, grid[6] =

AND RO,RO0,#0

ADD RO,RO,#5

ADD R1,R5,#-9

STR RO,R1,#6

R5 —

CS270 - Spring 2013 - Colorado State University

grid
grid
grid
grid
grid
grid
grid
grid
grid
grid

OO N OGN WN RO

20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More LC-3 Code

, grid[x+1] = grid[x] + 2

LDR RO,R5,#-10

ADD R1,R5,#-9

ADD R1,RO,R1

LDR R2,R1,#0

ADD R2,R2,#2

LDR RO,R5,#-10

ADD RO,RO,#1

ADD R1,R5,#-9

ADD R1,RO,R1

STR R2,R1,#0

CS270 - Spring 2013 - Colorado State University

grid
grid
grid
grid
grid
grid
grid
grid
grid

grid|

21

©.® NS WN O

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Passing Arrays as Arguments
@ C passes arrays by pointer

= the address of the array (i.e., of the first element)
IS written to the function's activation record

= otherwise, would have to copy each element

main() {

int numbers[MAX_NUMS]:) This must be a constant, e.g.,

#define MAX_NUMS 10

mean = Average(numbers);

}
int Average(int inputValues[MAX_NUMS]) {

for (index = 0; index < MAX_NUMS; index++)
sum = sum + indexValues[index];
return (sum / MAX_NUMS);

CS270 - Spring 2013 - Colorado State University 22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A String Is an Array of Characters

@ Allocate space for a string like any other array:
char outputString[16];

@ Space for string must contain room for terminating
Zero.

@ Special syntax for initializing a string:
char outputString[16] = "Result = ";

@ ...which is the same as:
outputString[0] = 'R’;

outputString[1] ='e’;
outputString[2] = 's

CS270 - Spring 2013 - Colorado State University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

/O with Strings

@ Printf and scanf use "%s" format character for
string
= Printf -- print characters up to terminating zero
printf("%s", outputString);

= Scanf -- read characters until whitespace,
store result in string, and terminate with zero

scanf("%s", inputString);

CS270 - Spring 2013 - Colorado State University 24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Relationship between Arrays and
Pointers

@ An array name is essentially a pointer to the first
element in the array
char word[10];

char* cptr ;
cptr = word; /* points to word[0] */

Q@ Difference:
=« Can change the contents of cptr, as in
cptr = cptr +1;

@ Why? Because the identifier "word" Is not a
variable.

CS270 - Spring 2013 - Colorado State University 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Correspondence between Ptr and
Array Notation

char word[10];
char *cptr;
cptr = word; /* points to word[O0] */

@ Given the declarations on the previous page,
each line below gives three equivalent
expressions:

cptr word &word|O]
(cptr +n) word + n &word[n]
*cptr *word word|[O]
*(cptr +n) *(word + n) word[n]

CS270 - Spring 2013 - Colorado State University

26

Copyright © The McGraw-Hill Compan nc. Permis: required for reproduction or display

Common Pltfalls W|th Arrays in C

@ Overrun array limits

= There is no checking at run-time or compile-time
to see whether reference is within array bounds.

Int i;
Int array[10];
for 1=0;1<=10; i++) array[i] =0
Q@ Declaration with variable size
= Size of array must be known at compile time.

void SomeFunction(int num_elements) {
Int temp[num_elements];

CS270 - Spring 2013 - Colorado State University

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Pointer Arithmetic
Q@ Address calculations depend on size of elements

=« Our LC-3 code has been assuming a word per element,
e.g., to find 4th element, we add 4 to base address

= It's ok, because we've only shown code for int and chatr,
both of which take up one word.

« If double, we'd have to add 8 to find address of 4th
element (how about byte addressable systems?)

@ C does size calculations under the covers,
depending on size of item being pointed to:

double x{10};) allocates 20 words (2 per element)
double *y = x;
*(y +3) =13; a same as Xx[3] -- base address plus 6

CS270 - Spring 2013 - Colorado State University 28

