
Chapter 16
Pointers and Arrays

Original slides from Gregory Byrd, North 
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya             
Colorado State University



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

2CS270 - Spring 2013 - Colorado State University

Pointers and Arrays
We've seen examples of both in our LC-3 
programs; now we'll see them in C.
Pointer
� Address of a variable in memory
� Allows us to indirectly access variables

• in other words, we can talk about its address
rather than its value

Array
� A list of values arranged sequentially in memory
� Example: a list of telephone numbers

� Expression a[4] refers to the 5th element of the array a



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

3CS270 - Spring 2013 - Colorado State University

Address vs. Value
Sometimes we want to deal with the address
of a memory location,
rather than the value it contains.
Recall example from Chapter 6:
adding a column of numbers.

� R2 contains address of first location.
� Read value, add to sum, and

increment R2 until all numbers
have been processed.

R2 is a pointer -- it contains the
address of data we’re interested in.

x3107
x2819
x0110
x0310
x0100
x1110
x11B1
x0019

x3100

x3101

x3102

x3103

x3104

x3105

x3106

x3107

x3100

R2

address

value



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

4CS270 - Spring 2013 - Colorado State University

Another Need for Addresses

Consider the following function that's supposed 
to swap the values of its arguments.

void Swap(int firstVal, int secondVal)

{
int tempVal = firstVal;
firstVal = secondVal;
secondVal = tempVal;

}



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

Executing the Swap Function

firstVal

secondVal  

valueB 

valueA 

3
4
4
3

R6

before call

tempVal 

firstVal

secondVal  

valueB 

valueA 

3

4
3
4
3

R6

after call

These values
changed...

...but these
did not.

Swap needs addresses of variables outside its own
activation record.

Swap

main



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

Pointers in C
C has explicit syntax for representing addresses 
– we can talk about and manipulate pointers
as variables and in expressions.
� Declaration

int *p; /* p is a pointer to an int */

float *p; /* p is a pointer to an float */

A pointer in C points to a particular data type:
int* , double* , char* , etc.

� Operators

*p -- returns the value pointed by p (“dereferencing”)

&z -- returns the address of variable z



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

Example
int i;

int *ptr;

i = 4;

ptr = &i;

*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the 
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

8CS270 - Spring 2013 - Colorado State University

Example: LC-3 Code
; i is 1st local (offset 0), ptr is 2nd (offset -1)
; i = 4;

AND  R0,R0,#0  ; clear R0

ADD  R0,R0,#4  ; put 4 in R0

STR  R0,R5,#0  ; store in I

; ptr = &i;

ADD  R0,R5,#0  ; R0 = R5 + 0 (&i)

STR  R0,R5,#-1 ; store in ptr

; *ptr = *ptr + 1;

LDR  R0,R5,#-1 ; R0 = mem[R5 – 1] (ptr)

LDR  R1,R0,#0  ; load contents (*ptr)

ADD  R1,R1,#1  ; *ptr + 1

STR  R1,R0,#0  ; store contents (*ptr)



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

9CS270 - Spring 2013 - Colorado State University

Pointers as Arguments
Passing a pointer into a function allows the 
function to read/change memory outside its 
activation record.

void NewSwap(int *firstVal, int *secondVal)

{
int tempVal = *firstVal;
*firstVal = *secondVal;
*secondVal = tempVal;

}

Arguments are
integer pointers.
Caller passes addresses
of variables that it wants
function to change.

To call:
NewSwap(&valueA, &valueB);



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

10CS270 - Spring 2013 - Colorado State University

Passing Pointers to a Function
main() wants to swap the values of valueA and 
valueB, so it passes the addresses to NewSwap:

NewSwap(& valueA , & valueB );

Code for passing arguments:
ADD R0,R5,#-1 ; &valueB
ADD R6,R6,#-1 ; push
STR R0,R6,#0 ;  it
ADD R0,R5,#0  ; &valueA
ADD R6,R6,#-1 ; push
STR R0,R6,#0 ;  it

tempVal

firstVal

secondVal

valueB

valueA

xEFFA
xEFF9

4 
3

xEFFD

R6

R5



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

11CS270 - Spring 2013 - Colorado State University

Code Using Pointers
Inside the NewSwap routine

; int tempVal = *firstVal;
LDR  R0,R5,#4 ; R0=xEFFA
LDR  R1,R0,#0 ; R1=M[xEFFA]=3
STR  R1,R5,# 0 ; tempVal=3

; *firstVal = *secondVal;
LDR  R1,R5,#5 ; R1=xEFF9
LDR  R2,R1,#0 ; R 2=M[xEFF9]=4
STR  R2,R0,#0 ; M[xEFFA]=4

; *secondVal = tempVal;
LDR  R2,R5,#0 ; R2=3
STR  R2,R1,#0 ; M[xEFF9]=3

tempVal

firstVal

secondVal

valueB

valueA

3

xEFFA
xEFF9

3 
4

xEFFD

R6

R5



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

12CS270 - Spring 2013 - Colorado State University

Null Pointer
Sometimes we want a pointer that points to 
nothing.
In other words, we declare a pointer, but we’re 
not ready to actually point to something yet.
int *p;
p = NULL;  /* p is a null pointer */

NULL is a predefined macro that contains a 
value that a non-null pointer should never hold.
� NULL =usually equals 0, because address 0 is not a 

legal address for most programs on most platforms.



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

13CS270 - Spring 2013 - Colorado State University

Using Arguments for Results
Pass address of variable where you want result 
stored
� useful for multiple results
� Example:

• return value via pointer
• return status code as function result

This solves the mystery of why ‘&’ with 
argument to scanf:
scanf("%d ", &dataIn);

read a decimal integer
and store in dataIn



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

14CS270 - Spring 2013 - Colorado State University

Syntax for Pointer Operators
Declaring a pointer
type *var; or type* var;
� Either of these work -- whitespace doesn't matter
� Example: int* (integer pointer), char* (char pointer), etc.

Creating a pointer
&var
� Must be applied to a memory object, such as a variable (not &3)

Dereferencing
� Can be applied to any expression.  All of these are legal:

*var // contents of memory pointed to by var

**var // contents of memory location pointed to

// by memory location pointed to by var



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

15CS270 - Spring 2013 - Colorado State University

Example using Pointers
IntDivide performs both integer division and 
remainder, returning results via pointers.
� Returns –1 if divide by zero, else 0

int IntDivide(int x, int y, int *quoPtr, int *remPt r);

main()

{

int dividend, divisor;  /* numbers for divide op */

int quotient, remainer; /* results */

int error;              
/* ... Input code removed ... */

error = IntDivide(dividend, divisor,

&quotient, &remainder);

/* ... Remaining code removed ... */

}



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

16CS270 - Spring 2013 - Colorado State University

C Code for IntDivide

int IntDivide(int x, int y, int *quoPtr, int *remPt r)

{
if (y != 0) 

{
*quoPtr = x / y;  /* quotient in *quoPtr */
*remPtr = x % y;  /* remainder in *remPtr */
return 0;

}
else

return –1;

}



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

17CS270 - Spring 2013 - Colorado State University

Arrays
How do we allocate a group of memory 
locations?
� character string
� table of numbers

How about this?
Not too bad, but…
� what if there are 100 numbers?
� how do we write a loop to process each number?

Fortunately, C gives us a better way -- the array.
int num[4];
� Declares a sequence of four integers, referenced by:

num[0] , num[1] , num[2] , num[3] .

int num0;
int num1;
int num2;
int num3;



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

18CS270 - Spring 2013 - Colorado State University

Array Syntax
Declaration
type variable [ num_elements ];

Array Reference
variable [ index ];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

19

CS270 - Spring 2013 - Colorado State University

Array as a Local Variable

Array elements are allocated
as part of the activation 
record.
int grid[10];

First element (grid[0] )
is at lowest address
of allocated space.
If grid is first variable 
allocated, then R5 will point to 
grid[9] .

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

20CS270 - Spring 2013 - Colorado State University

LC-3 Code for Array References
; x = grid[3] + 1

ADD R0,R5,#-9  ; R0 = &grid[0]

LDR R1,R0,#3   ; R1 = grid[3]

ADD R1,R1,#1   ; plus 1

STR R1,R5,#-10 ; x = R1

; grid[6] = 5;

AND R0,R0,#0

ADD R0,R0,#5  ; R0 = 5

ADD R1,R5,#-9 ; R1 = &grid[0]

STR R0,R1,#6  ; grid[6] = R0

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

R5



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

21CS270 - Spring 2013 - Colorado State University

More LC-3 Code
; grid[x+1] = grid[x] + 2

LDR R0,R5,#-10 ; R0 = x
ADD R1,R5,#-9 ; R1 = &grid[0]
ADD R1,R0,R1  ; R1 = &grid[x]
LDR R2,R1,#0  ; R2 = grid[x]
ADD R2,R2,#2  ; add 2

LDR R0,R5,#-10 ; R0 = x
ADD R0,R0,#1  ; R0 = x+1
ADD R1,R5,#-9 ; R1 = &grid[0]
ADD R1,R0,R1  ; R1 = &grid[x+1]
STR R2,R1,#0  ; grid[x+1] = R2 

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

22CS270 - Spring 2013 - Colorado State University

Passing Arrays as Arguments
C passes arrays by pointer
� the address of the array (i.e., of the first element)

is written to the function's activation record
� otherwise, would have to copy each element

main() {

int numbers[MAX_NUMS];

…
mean = Average(numbers);

…

}

int Average(int inputValues[MAX_NUMS]) {

…

for (index = 0; index < MAX_NUMS; index++) 
sum = sum + indexValues[index];

return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

23CS270 - Spring 2013 - Colorado State University

A String is an Array of Characters
Allocate space for a string like any other array:
char outputString[16];

Space for string must contain room for terminating 
zero.
Special syntax for initializing a string:
char outputString[16] = "Result = ";

…which is the same as:
outputString[0] = 'R';

outputString[1] = 'e';

outputString[2] = 's';
...



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

24CS270 - Spring 2013 - Colorado State University

I/O with Strings

Printf and scanf use "%s" format character for 
string
� Printf -- print characters up to terminating zero

printf("%s", outputString);

� Scanf -- read characters until whitespace,
store result in string, and terminate with zero

scanf("%s", inputString);



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

25CS270 - Spring 2013 - Colorado State University

Relationship between Arrays and 
Pointers

An array name is essentially a pointer to the first 
element in the array

char word[10];

char * cptr ;

cptr = word; /* points to word[0] */

Difference:
� Can change the contents of cptr, as in

cptr = cptr + 1;

Why? Because the identifier "word" is not a 
variable.



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

26CS270 - Spring 2013 - Colorado State University

Correspondence between Ptr and 
Array Notation

Given the declarations on the previous page,
each line below gives three equivalent 
expressions:

cptr word &word[0]

(cptr + n) word + n &word[n]

*cptr *word word[0]

*( cptr + n) *(word + n) word[n]

char word[10];
char *cptr;
cptr = word; /* points to word[0] */



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

27CS270 - Spring 2013 - Colorado State University

Common Pitfalls with Arrays in C
Overrun array limits
� There is no checking at run-time or compile-time

to see whether reference is within array bounds.
int i;

int array[10];

for (i = 0; i <= 10; i++) array[i] = 0;

Declaration with variable size
� Size of array must be known at compile time.

void SomeFunction(int num_elements) {
int temp[num_elements];
…

}



Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display.

28CS270 - Spring 2013 - Colorado State University

Pointer Arithmetic
Address calculations depend on size of elements
� Our LC-3 code has been assuming a word per element, 

e.g., to find 4th element, we add 4 to base address
� It's ok, because we've only shown code for int and char,

both of which take up one word.
� If double, we'd have to add 8 to find address of 4th 

element (how about byte addressable systems?)

C does size calculations under the covers,
depending on size of item being pointed to:
double x[10]; 

double *y = x;
*(y + 3) = 13;

allocates 20 words (2 per element)allocates 20 words (2 per element)allocates 20 words (2 per element)allocates 20 words (2 per element)

same as x[3] -- base address plus 6


