Chapter 17
Recursion

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

What Is Recursion?

@ A recursive function is one that solves its task
by calling itself on smaller pieces of data.
= Similar to recurrence function in mathematics.

= Like iteration -- can be used interchangeably;
sometimes recursion results in a simpler solution.

Example: Running sum (ii)

1
RunningSum(1) =1 int RunningSum(int n) {
RunningSum(n) = if (n == 1){
n + RunningSum(n-1) return 1;
} else {
return n + RunningSum(n-1);
}
CS270 - Sar}ng 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Executing RunningSum

Runni ngSun{ 4) ;

return value = 10 RunningSum(4)

return 4 + Runni ngSum(3);

return value = 6 RunningSum(3)

A

return value = 3

return 3 + Runni ngSum(2) ;

RunningSum(2)

return 2 + Runni ngSun(1) ;

return value = 1

RunningSum(1)

\4

return 1;

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Check Web Applets

Factorialhttp://scis.athabascau.ca/html/lo/repos/comp272/applets/f

actorial/index.html
Sortinghttp://www.atkinson.yorku.ca/~sychen/research/sorting/sorti
ngHome.html

Tower of Hanoi
http://www.animatedrecursion.com/intermediate/towersofhanoi.htm

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

High-Level Example: Binary Search

@ Given a sorted set of exams, in alphabetical
order, find the exam for a particular student.

1. Look at the exam halfway through the pile.

2. |If it matches the name, we're done;
If It does not match, then...

3a. If the name Is greater (alphabetically), then
search the upper half of the stack.

3b. If the name Is less than the halfway point, then
search the lower half of the stack.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Binary Search: Pseudocode

@ Pseudocode is a way to describe algorithms

without completely coding them in C.

FindExam(studentName, start, end) {

halfwayPoint = (end + start)/2;

If (end < start){
ExamNotFound(); /* exam not in stack */

} else if (studentName == NameOfExam(halfwayPoint))
ExamFound(halfwayPoint); /* found exam! */

} else if (studentName < NameOfExam(halfwayPoint)){
[* search lower half */
FindExam (studentName, start, halfwayPoint-1)

} else {
[* search upper half */
FindExam (studentName, halfwayPoint + 1, end);

}
}

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

High-Level Example: Towers of Hanol
@ Task: Move all disks from one post to another post.

T

Post 1 Post 2 Post 3

Rules:

(1) Can only move one disk at a time.

(2) Cannot put larger disk on top of a smaller disk.
(3) May use third post for temporary storage.

CS270 - Spring 2013 - Colorado State University 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Task Decomposition

@ Disks start on Post 1, and target is Post 3.

1. Move top n-1 disks to

Post 2. 1

2. Move largest disk to

-

Post 3. (
1 3
3. Move n-1 disks from 1
Post 2 to Post 3.
(
1 2 3

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Task Decomposition (cont.)

@ Task 1 is really the same problem,
with fewer disks and a different target post.

= "Move n-1 disks from Post 1 to Post 2."

@ And Task 3 Is also the same problem, with fewer
disks and different starting and target posts.

= "Move n-1 disks from Post 2 to Post 3."

@ So this Is a recursive algorithm.

= The terminal case is moving the smallest disk -- can
move directly without using third post.

= Number disks from 1 (smallest) to n (largest).

CS270 - Spring 2013 - Colorado State University 9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Towers of Hanoi: Pseudocode

MoveDisk(diskNumber, startPost, endPost, midPost)
If (diskNumber > 1) {
[* Move top n-1 disks to mid post */
MoveDisk (diskNumber-1, startPost, midPost, endPost)

printf("Move disk number %d from %d to %d.\n",
diskNumber, startPost, endPost);

[* Move n-1 disks from mid post to end post */
MoveDisk (diskNumber-1, midPost, endPost, startPost);

}

else {
printf("Move disk number 1 from %d to %d.\n",
startPost, endPost);

} CS270 - Spring 2013 - Colorado State University

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Detailed Example: Fibonacci Numbers

@ Mathematical Definition:
f(n)=f(n-1)+f(n—-2)
f(1)=1
f(0)=1
Q@ In other words, the n-th Fibonacci number is
the sum of the previous two Fibonacci numbers.

CS270 - Spring 2013 - Colorado State University 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fibonacci: C Code

Int Fibonacci(int n)

{
If (n==20)
return 1;
} else {
return

I (n==1)){

Fibonacci (n-1) + Fibonacci

CS270 - Spring 2013 - Colorado State University

(n-2);

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Records

@ Whenever Fibonacci is invoked,
a new activation record Is pushed onto the stack.

main calls Fibonacci(3) calls Fibonacci(2) calls
Fibonacci(3) Fibonacci(2) Fibonacci(1)
«— RO6
_ Fib(1)
«— RO6
_ Fib(2) _ Fib(2)
«— RO6

— Fib(3) — Fib(3) — Fib(3)
. main — main —] main —]

CS270 - Spring 2013 - Colorado State University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Records (cont.)

Fibonacci(1) retu
Fibonacci(2) ca
Fibonacci(0)

ns,
lls

«— RG

— Fi b(0) _

— Fib(2) _

— Fib(3)

. main

Fibonacci(2) retu

s,

Fibonacci(3) calls

Fibonacci(1)

«— RO

— Fib(1)

— Fib(3)

. main

Fibonacci(3)
returns

«— RG

. main

CS270 - Spring 2013 - Colorado State University

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Tracing the Function Calls

@ If we are debugging this program,
we might want to trace all the calls of Fibonacci.

= Note: A trace will also contain the arguments
passed into the function.

@ For Fibonacci(3), a trace looks like:

Fibonacci(3)
Fibonacci(2)
Fibonacci(1)
Fibonacci(0)
Fibonacci(1)

@ What would trace of Fibonacci(4) look like?

CS270 - Spring 2013 - Colorado State University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fibonacci: C Code

Int Fibonacci(int n)

{
If (n==20)
return 1;
} else {
return

I (n==1)){

Fibonacci (n-1) + Fibonacci

CS270 - Spring 2013 - Colorado State University

(n-2);

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fibonacci: LC-3 Code

Activation Record

temp w_ ‘Iocal

dynamic link =
bookkeeping return address \ Compiler generates

return value temporary variable to hold
n |arg | result of first Fibonacci call.

CS270 - Spring 2013 - Colorado State University 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-

Fibonacci

ADD R6, R6, #-1
ADD RG6, R6, #-1
STR R7, R6, #0
ADD R6, R6, #-1
STR R5, R6, #0
ADD R5, R6, #-1
ADD RG6, R6, #-2

LDR RO, R5, #4
BRz FIB_BASE
ADD RO, RO, #-1
BRz FIB_BASE

2 Code (part 1 of 3)

; alloc ret val
, push ret addr

; push frame ptr (dynamic link)

; set frame pointer
, space for locals and temps

, load parameter n
: check for terminal cases

CS270 - Spring 2013 - Colorado State University

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Code (part 2 of 3)

LDR RO, R5, #4 , read parameter n
ADD RO, RO, #-1 , calculate n-1
ADD RG6, R6, #-1 ; push n-1

STR RO, R6, #0

JSR Fibonacci ; call self

LDR RO, R6, #0 ; pop return value
ADD RG6, R6, #1

STR RO, R5, #-1 ; store in temp
LDR RO, R5, #4 , read parameter n
ADD RO, RO, #-2 , calculate n-2
ADD RG6, R6, #-1 ; push n-2

STR RO, R6, #0

JSR Fibonacci ; call self

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

LC-3 Code (part 3 of 3)

LDR RO, R6, #0 ; pop return value
ADD RG6, R6, #1
LDR R1, R5, #-1 , read temp
ADD RO, RO, R1 : Fib(n-1) + Fib(n-2)
BRnzp FIB_END ; all done

FIB_BASE AND RO, RO, #0 ; base case — return 1
ADD RO, RO, #1

FIB END STR RO, R5, #3 ; write return value (RO)
ADD R6, R5, #1 ; pop local variables
LDR R5, R6, #0 ; pop dynamic link
ADD RG6, R6, #1
LDR R7, R6, #0 , pop return address
ADD RG6, R6, #1
RET

CS270 - Spring 2013 - Colorado State University 20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A Final C Example: Printing an Integer

@ Recursively converts an unsigned integer as a string of
ASCII characters.
= If integer <10, convert to char and print.
= else, call self on first (n-1) digits and then print last digit.

void IntToAscii(int num) {
Int prefix, currDigit;
if (num < 10) {
putchar(num + '0"); /* print number */
} else {
prefix = num/ 10; /* previous digits */
digit = num % 10; /* current digit */
IntToAscii (prefix); /* recursive call */
putchar(digit + '0"); /* print digit */
}
}

CS270 - Spring 2013 - Colorado State University 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Trace of IntToAscIl

@ Calling IntToAscii with parameter 12345:

- IntToAscii(12345)
- IntToAscii(1234)
IntToAscII(123)
IntToAscii(12)
IntToAscii(1)
putchar('l")
putchar('2")
putchar('3")
- putchar('4")
- putchar('s")

CS270 - Spring 2013 - Colorado State University

22

