
Chapter 17
Recursion

Original slides from Gregory Byrd, North
Carolina State University

Modified by C. Wilcox, M. Strout, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Spring 2013 - Colorado State University

A recursive function is one that solves its task
by calling itself on smaller pieces of data.
� Similar to recurrence function in mathematics.
� Like iteration -- can be used interchangeably;

sometimes recursion results in a simpler solution.

Example: Running sum ()∑
n

i
1

Mathematical Definition:
RunningSum(1) = 1
RunningSum(n) =

n + RunningSum(n-1)

Recursive Function:
int RunningSum(int n) {

if (n == 1){
return 1;

} else {
return n + RunningSum(n-1);

}
}

What is Recursion?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Spring 2013 - Colorado State University

Executing RunningSum

RunningSum(4)

RunningSum(3)

RunningSum(2)

RunningSum(1)return value = 1

return value = 3

return value = 6

return value = 10

return 1;

return 2 + RunningSum(1);

return 3 + RunningSum(2);

return 4 + RunningSum(3);

res = RunningSum(4);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Check Web Applets

4CS270 - Spring 2013 - Colorado State University

• Factorialhttp://scis.athabascau.ca/html/lo/repos/comp272/applets/f
actorial/index.html

• Sortinghttp://www.atkinson.yorku.ca/~sychen/research/sorting/sorti
ngHome.html

• Tower of Hanoi
http://www.animatedrecursion.com/intermediate/towersofhanoi.htm
l

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Spring 2013 - Colorado State University

High-Level Example: Binary Search

Given a sorted set of exams, in alphabetical
order, find the exam for a particular student.

1. Look at the exam halfway through the pile.
2. If it matches the name, we're done;

if it does not match, then...
3a. If the name is greater (alphabetically), then

search the upper half of the stack.
3b. If the name is less than the halfway point, then

search the lower half of the stack.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Spring 2013 - Colorado State University

Binary Search: Pseudocode
Pseudocode is a way to describe algorithms
without completely coding them in C.

FindExam(studentName, start, end) {
halfwayPoint = (end + start)/2;
if (end < start){

ExamNotFound(); /* exam not in stack */
} else if (studentName == NameOfExam(halfwayPoint)) {

ExamFound(halfwayPoint); /* found exam! */
} else if (studentName < NameOfExam(halfwayPoint)){

/* search lower half */
FindExam (studentName, start, halfwayPoint-1)

} else {
/* search upper half */
FindExam (studentName, halfwayPoint + 1, end);

}
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Spring 2013 - Colorado State University

High-Level Example: Towers of Hanoi
Task: Move all disks from one post to another post.

Rules:
(1) Can only move one disk at a time.
(2) Cannot put larger disk on top of a smaller disk.
(3) May use third post for temporary storage.

Post 1 Post 2 Post 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Spring 2013 - Colorado State University

Task Decomposition

Disks start on Post 1, and target is Post 3.

1. Move top n-1 disks to
Post 2.

2. Move largest disk to
Post 3.

3. Move n-1 disks from
Post 2 to Post 3.

1 2 3

1 2 3

1 2 3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Spring 2013 - Colorado State University

Task Decomposition (cont.)

Task 1 is really the same problem,
with fewer disks and a different target post.
� "Move n-1 disks from Post 1 to Post 2."

And Task 3 is also the same problem, with fewer
disks and different starting and target posts.
� "Move n-1 disks from Post 2 to Post 3."

So this is a recursive algorithm.
� The terminal case is moving the smallest disk -- can

move directly without using third post.
� Number disks from 1 (smallest) to n (largest).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Spring 2013 - Colorado State University

Towers of Hanoi: Pseudocode

MoveDisk(diskNumber, startPost, endPost, midPost) {

if (diskNumber > 1) {

/* Move top n-1 disks to mid post */

MoveDisk (diskNumber-1, startPost, midPost, endPost)

printf("Move disk number %d from %d to %d.\n",
diskNumber, startPost, endPost);

/* Move n-1 disks from mid post to end post */

MoveDisk (diskNumber-1, midPost, endPost, startPost);

}

else {
printf("Move disk number 1 from %d to %d.\n",

startPost, endPost);

}

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Spring 2013 - Colorado State University

Detailed Example: Fibonacci Numbers

Mathematical Definition:

In other words, the n-th Fibonacci number is
the sum of the previous two Fibonacci numbers.

1)0(

1)1(

)2()1()(

=
=

−+−=

f

f

nfnfnf

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Spring 2013 - Colorado State University

Fibonacci: C Code

int Fibonacci(int n)

{

if ((n == 0) || (n == 1)) {

return 1;

} else {

return Fibonacci (n-1) + Fibonacci (n-2);

}

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Spring 2013 - Colorado State University

Activation Records
Whenever Fibonacci is invoked,
a new activation record is pushed onto the stack.

Fib(1)

R6

Fib(2)

Fib(3)

main

main calls
Fibonacci(3)

Fibonacci(3) calls
Fibonacci(2)

Fibonacci(2) calls
Fibonacci(1)

R6

Fib(3)

main

R6

Fib(2)

Fib(3)

main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Spring 2013 - Colorado State University

Activation Records (cont.)
Fibonacci(1) returns,
Fibonacci(2) calls

Fibonacci(0)

Fibonacci(2) returns,
Fibonacci(3) calls

Fibonacci(1)

Fibonacci(3)
returns

R6

main

R6

Fib(1)

Fib(3)

main

Fib(0)

R6

Fib(2)

Fib(3)

main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Spring 2013 - Colorado State University

Tracing the Function Calls

If we are debugging this program,
we might want to trace all the calls of Fibonacci.
� Note: A trace will also contain the arguments

passed into the function.

For Fibonacci(3), a trace looks like:
Fibonacci(3)
Fibonacci(2)
Fibonacci(1)
Fibonacci(0)
Fibonacci(1)

What would trace of Fibonacci(4) look like?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Spring 2013 - Colorado State University

Fibonacci: C Code

int Fibonacci(int n)

{

if ((n == 0) || (n == 1)) {

return 1;

} else {

return Fibonacci (n-1) + Fibonacci (n-2);

}

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Spring 2013 - Colorado State University

Fibonacci: LC-3 Code
Activation Record

temp

dynamic link

return address

return value

n

bookkeepingbookkeepingbookkeepingbookkeeping

argargargarg

Compiler generates
temporary variable to hold
result of first Fibonacci call.

locallocallocallocal

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Spring 2013 - Colorado State University

LC-2 Code (part 1 of 3)
Fibonacci

ADD R6, R6, #-1 ; alloc ret val

ADD R6, R6, #-1 ; push ret addr

STR R7, R6, #0

ADD R6, R6, #-1 ; push frame ptr (dynamic link)

STR R5, R6, #0

ADD R5, R6, #-1 ; set frame pointer

ADD R6, R6, #-2 ; space for locals and temps

LDR R0, R5, #4 ; load parameter n

BRz FIB_BASE ; check for terminal cases

ADD R0, R0, #-1

BRz FIB_BASE

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Spring 2013 - Colorado State University

LC-3 Code (part 2 of 3)

LDR R0, R5, #4 ; read parameter n

ADD R0, R0, #-1 ; calculate n-1

ADD R6, R6, #-1 ; push n-1

STR R0, R6, #0

JSR Fibonacci ; call self

LDR R0, R6, #0 ; pop return value

ADD R6, R6, #1

STR R0, R5, #-1 ; store in temp

LDR R0, R5, #4 ; read parameter n

ADD R0, R0, #-2 ; calculate n-2

ADD R6, R6, #-1 ; push n-2

STR R0, R6, #0

JSR Fibonacci ; call self

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Spring 2013 - Colorado State University

LC-3 Code (part 3 of 3)

LDR R0, R6, #0 ; pop return value

ADD R6, R6, #1

LDR R1, R5, #-1 ; read temp

ADD R0, R0, R1 ; Fib(n-1) + Fib(n-2)

BRnzp FIB_END ; all done

FIB_BASE AND R0, R0, #0 ; base case – return 1

ADD R0, R0, #1

FIB_END STR R0, R5, #3 ; write return value (R0)

ADD R6, R5, #1 ; pop local variables

LDR R5, R6, #0 ; pop dynamic link

ADD R6, R6, #1

LDR R7, R6, #0 ; pop return address

ADD R6, R6, #1

RET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Spring 2013 - Colorado State University

A Final C Example: Printing an Integer

Recursively converts an unsigned integer as a string of
ASCII characters.
� If integer <10, convert to char and print.
� else, call self on first (n-1) digits and then print last digit.

void IntToAscii(int num) {
int prefix, currDigit;
if (num < 10) {

putchar(num + '0'); /* print number */
} else {

prefix = num / 10; /* previous digits */
digit = num % 10; /* current digit */
IntToAscii (prefix); /* recursive call */
putchar(digit + '0'); /* print digit */

}
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Spring 2013 - Colorado State University

Trace of IntToAscii

Calling IntToAscii with parameter 12345:
IntToAscii(12345)

IntToAscii(1234)
IntToAscii(123)

IntToAscii(12)
IntToAscii(1)
putchar('1')

putchar('2')
putchar('3')

putchar('4')
putchar('5')

