Chapter 18
/O In C

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Standard C Library

@ /O commands are not included as part of the C language.
Q@ Instead, they are part of the Standard C Library.

= A collection of functions and macros that must be
Implemented by any ANSI standard implementation.

= Automatically linked with every executable.

=« Implementation depends on processor, operating
system, etc., but interface Is standard.

@ Since they are not part of the language, compiler must be
told about function interfaces.

@ Standard header files are provided, which contain
declarations of functions, variables, etc.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Basic I/O Functions

@ The standard I/O functions are declared in the
<stdio.h> header file.

Function Description

putchar Displays an ASCII character to the screen.
getchar Reads an ASCII character from the keyboard.
printf Displays a formatted string,

scanf Reads a formatted string.

fopen Open/create a file for 1/O.

fprintf Writes a formatted string to a file.

fscanf Reads a formatted string from a file.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Text Streams

@ All character-based I/O in C is performed on text streams.
@ A stream is a sequence of ASCII characters, such as:
« the sequence of ASCII characters printed to the
monitor by a single program
=« the sequence of ASCII characters entered by the user
during a single program
= the sequence of ASCII characters in a single file
@ Characters are processed in the order in which
they were added to the stream.
= €.7., a program sees input characters in the same
order as the user typed them.
« Standard input stream (keyboard) is called stdin.
« Standard output stream (monitor) is called stdout.

CS270 - Spring 2013 - Colorado State University 4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Character I/O

putchar(c) Adds one ASCII character (c) to stdout.
getchar() Reads one ASCII character from stdin.

@ These functions deal with "raw" ASCII characters;
no type conversion is performed.

char c ='nh’;
puECEar(-Cg.; . Each of these calls
gﬂtgh::glo)jr). prints 'h' to the screen.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Buffered |I/O

@ In many systems, characters are buffered in memory
during an I/O operation.

= Conceptually, each I/O stream has its own buffer.
@ Keyboard input stream

=« Characters are added to the buffer only when the
newline character (i.e., the "Enter" key) Is pressed.

= This allows user to correct input before confirming
with Enter.

@ Output stream

= Characters are not flushed to the output device
until the newline character is added.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Input Buffering

printf("Input character 1:\n");
INnCharl = getchar();

printf("Input character 2:\n");
INnChar2 = getchar();

@ After seeing the first prompt and typing a single
character, nothing happens.

Q@ EXxpect to see the second prompt, but character not
added to stdin until Enter is pressed.

@ When Enter is pressed, newline is added to stream
and is consumed by second getchar(), so inChar2 is

setto' \n'.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Output Buffering

putchar('a’);
[* generate some delay */
for (i=0; I<KDELAY; i++) sum +=|;

putchar('b’);
putchar(\n");

@ User doesn't see any character output until
after the delay.

@ 'a' Is added to the stream before the delay,

but the stream is not flushed (displayed) until
"\n' Is added.

CS270 - Spring 2013 - Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Formatted |I/O

@ Printf and scanf allow conversion between
ASCII representations and internal data types.

@ Format string contains text to be read/written,
and formatting characters that describe
how data Is to be read/written.

%d
%f

%X
%b
%cC
%S

signed decimal integer

signed decimal floating-point number
unsigned hexadecimal number
unsigned binary number

ASCII character

ASCII string

CS270 - Spring 2013 - Colorado State University

Special Character Literals

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

@ Certain characters cannot be easily represented by a single
keystroke, because they

= correspond to whitespace (newline, tab, backspace, ...)
= are delimiters for other literals (quote, double quote, ...)

@ These are represented by the following sequences:

\n

\t

\b

\\

\

\"

\O nnn
\X nnn

newline

tab

backspace

backslash

single quote

double guote

ASCII code nnn (in octal)
ASCII code nnn (in hex)

CS270 - Spring 2013 - Colorado State University

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

printf

@ Prints its first argument (format string) to stdout with all
formatting characters replaced by the ASCII representation
of the corresponding data argument.

Int a = 100;

Int b = 65;

char c ='z';

char banner[10] = "Hola!";
double pi = 3.14159;

printf("The variable 'a' decimal: %d\n", a);

printf("The variable 'a' hex: %x\n", a);

printf("The variable 'a' binary: %b\n", a);

printf("'a’' plus 'b' as character: %c\n", a+b);

printf("A char %c.\t A string %s\n A float %f\n",
c, banner, pi);

CS270 - Spring 2013 - Colorado State University 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Missing Data Arguments

@ What happens when you don't provide a
data argument for every formatting character?

printf("The value of nothing is %d\n");

@ %dwill convert and print whatever is on the stack
In the position where it expects the first argument.

In other words, something will be printed,
but it will be a garbage value as far as our program
IS concerned.

CS270 - Spring 2013 - Colorado State University

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

@ Reads ASCII characters from stdin,
matching characters to its first argument (format string),
converting character sequences according to any
formatting characters, and storing the converted values
to the addresses specified by its data pointer arguments.

char name[100];
iInt bMonth, bDay, bYear;
double gpa;

scanf("%s %d/%d/%d %lf",
name, &bMonth, &bDay, &bYear, &gpa);

CS270 - Spring 2013 - Colorado State University 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

scanf Conversion

@ For each data conversion, scanf will skip whitespace
characters and then read ASCII characters until it
encounters the first character that should NOT be
Included in the converted value.

%d Reads until first non-digit.
%x Reads until first non-digit (in hex).
%s Reads until first whitespace character.

@ Literals in format string must match literals in the
Input stream.

@ Data arguments must be pointers, because scanf
stores the converted value to that memory address.

CS270 - Spring 2013 - Colorado State University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

scanf Return Value

@ The scanf function returns an integer, which indicates
the number of successful conversions performed.

= This lets the program check whether the input stream
was in the proper format.
@ Example:

scanf("%s %d/%d/%d %lf",
name, &bMonth, &bDay, &bYear, &gpa);

Input Stream Return Value
Mudd 02/16/69 3.02 5
Muss 02 16 69 3.02 2

!

Doesn't match literal '/, so scanf quits
after second conversion.
CS270 - Spring 2013 - Colorado State University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Bad scanf Arguments

@ Two problems with scanf data arguments

1. Not a pointer
iInt n=0;
scanf("%d", n);

Will use the value of the argument as an address.
2. Missing data argument
scanf("%d");
Will get address from stack.

If you're lucky, program will crash because of trying to modify
a restricted memory location (e.g., location 0). Otherwise,
your program will just modify an arbitrary memory location,
which can cause very unpredictable behavior.

CS270 - Spring 2013 - Colorado State University 16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Variable Argument Lists

@ The number of arguments in a printf or scanf call
depends on the number of data items being
read or written.

Declaration of printf (from stdio.h):
Int printf(const char*, ...);

@ Recall calling sequence from Chapter 14

=« Parameters pushed onto stack from right to left.

= This stack-based calling convention allows for
a variable number of arguments,
and fixed arguments (which are named first)
are always the same offset from the frame ptr.

CS270 - Spring 2013 - Colorado State University

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

File I/O

@ For our purposes, a file is a sequence of ASCII
characters stored on some device.

@ Allows us to process large amounts of data
without having to type it in each time or read it all on the
screen as it scrolls by.

@ Each file Is associated with a stream.
= May be input stream or output stream (or both!).

@ The type of a stream Is a "file pointer”, declared as:
FILE *Infile:

= The FILE type is defined in <stdio.h>.

CS270 - Spring 2013 - Colorado State University 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

fopen

@ The fopen (pronounced "eff-open”) function associates a
physical file with a stream.

FILE *fopen(char* name, char* mode);

@ First argument: name

= The name of the physical file, or how to locate it on the
storage device. This may be dependent on the
underlying operating system.

@ Second argument: mode

= How the file will be used:
“r" --read from the file

"w' -- write, starting at the beginning of the file
“a" -- write, starting at the end of the file (append)

CS270 - Spring 2013 - Colorado State University 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

fprintf and fscanf

@ Once afile is opened, it can be read or written
using fscanf() and fprintf() , respectively.

@ These are just like scanf() and printf() ,
except an additional argument specifies a file pointer:

fprintf(outfile, "The answer is %d\n", x);

fscanf(infile, "%s %d/%d/%d %lf",
name, &Month, &bDay, &bYear, &gpa);

CS270 - Spring 2013 - Colorado State University

20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

fprintf and fscanf

float f1, f2;
intil, i2;
FILE *my_stream;
char my_filename[] = "snazzyjazz.txt";

my_stream = fopen (my_filename, "w");
fprintf (my_stream, "%f %f %#d %#d", 23.5, -12e6, 100, 5);

[* Close stream; skip error-checking for brevity of example */
fclose (my_stream);

my_stream = fopen (my_filename, "r");
fscanf (my_stream, "%f %f %i %i", &f1, &2, &il, &i2);

/* Close stream; skip error-checking for brevity of example */
fclose (my_stream);

printf ("Float 1 = %f\n", f1);
printf ("Float 2 = %f\n", 2);
printf ("Integer 1 = %d\n", i1);
printf ("Integer 2 = %d\n", i2);

This code example prints the following
output on the screen:

Float 1 = 23.500000

Float 2 = -12000000.000000
Integer 1 = 100

Integer 2 =5

If you examine the text file snazzyjazz.txt,
you will see it contains the following text:

23.500000 -12000000.000000 100 5

CS270 - Spring 2013 - Colorado State University

21

