Digital Logic Recap

@ Combinational logic
= Gates
= Functional blocks: MUX, Decoder, Adders etc

Q@ Sequential logic
= Storage elements

= Registers: row of storage elements + stuff
= Memory systems: arrays, need addressing

g

= Clock for synchronization >
« 2 GHz frequency => 1/2G" i.e. 0.50 nanosec clockes
period > =

CS270 - Spring 2013- Colorado State
University / -

Chapter 4
The Von Neumann
Model

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, Y. Malaiya
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

von Neumann Architecture

Four main components:
@ Memory - Logic
Q@ Control Unit

@ Arithmetic Logic Unit
Q@ Input/Output T Y o

Arithmetic

CS270 - Spring 2013- Colorado State
University

© O

©

© © 0 ¢

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The Stored Program Computer

1939 John V. Atanasoff, lowa State College
1941 Konrad Zuse, Berlin, program controlled computer
1943: ENIAC

« Eckert and Mauchly, U Penn
« Hard-wired program -- settings of dials and switches.

1945: John von Neumann, Princeton
= Wrote a report on the stored program concept
1964: Supercomputer, Cray

1971: Intel Microprocessor: processor on a single chip
1997: Smart Phone

Questions on who was first, controversies, law suits ...

CS270 - Spring 2013- Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Von Neumann Model

MEMORY
»
e MAR MDR
y
INPUT i OUTPUT

Keyboard Monitor
Mouse PROCESSING UNIT Printer
Scanner : LED
Disk TEMP Disk

CONTROL UNIT

PC > IR

CS270 - Spring 2013- Colorado State
University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Memory

@ Organization
= 2Kx m array of stored bits

Q@ Address
= unique (k-bit) identifier of location

Q@ Contents
= M-bit value stored In location

Q@ Basic Operations:

= LOAD: read a value from a
memory location

= STORE: write a value to a
memory location

CS270 - Spring 2013- Colorado State
University

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interface to Memory

@ How does CPU get data to/from memory?

= MAR: Memory Address Register

= MDR: Memory Data Register MEMORY

Q@ To a location (A): MAR MDR

1. Write the address (A) into the MAR.
2. Send a “read” signal to the memory.
;. Read the data from MDR.

Q@ To a value (X) to a location (A):
1. Write the data (X) to the MDR.
2. Write the address (A) into the MAR.
;. Send a “write” signal to the memory.

CS270 - Spring 2013- Colorado State
University 8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Processing Unit

@ Functional Units
= ALU = Arithmetic and Logic Unit

= could have many functional units.
(multiply, square root, ...)

« LC-3 performs ADD, AND, NOT

Q@ Registers
= Small, temporary storage

PROCESSING UNIT

ALU

TEMP

= Operands and results of functional units
=« LC-3 has eight registers (RO, ..., R7), each 16 bits wide

@ Word Size

= number of bits processed by ALU in one instruction

= also width of registers

o LC'3 iS 16 blts CS270 - Spring 2013- Colorado State

University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Input and Output

@ Devices for getting data into and out of computer

memory

@ Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

INPUT

Keyboard
Mouse
Scanner
Disk

OUTPUT

Monitor
Printer
LED
Disk

= LC-3 supports keyboard (input) and monitor (output)

= keyboard: data (KBDR) and status (KBSR) registers
= monitor: data register (DDR) and status register (DSR)

@ Some devices provide both input and output

= disk, network

@ Program that controls access to a device Is

usually called a driver.
CS270 - Spring 2013- Colorado State
University

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Unit
@ Orchestrates execution of the program

@ Instruction Register (IR) contains
the current instruction.

@ Program Counter (PC) contains
the address of the next instruction to be executed.

Q@ Control unit; CONTROL UNIT
= reads an instruction from memory PC R
Q@ the instruction’s address is in the PC

= Interprets the instruction, generating signals
that tell the other components what to do
@ an instruction may take many machine cycles to complete

CS270 - Spring 2013- Colorado State
University 11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing

Fetch instruction from memory
Decode instruction

Evaluate address

Fetch operands from memory
Execute operation

Store result

CS270 - Spring 2013- Colorado State
University

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction

@ The instruction is the fundamental unit of work:
= 0opcode: operation to be performed
= operands: data/locations to be used for operation

@ An instruction is encoded as a sequence of bits.
(Just like data!)

« Often, but not always, instructions have a fixed length,
such as 16 or 32 bhits.

= Control unit interprets instruction: generates sequence
of control signals to carry out operation.

= Operation is either executed completely, or not at all.

@ A computer’s instructions and their formats is known as
its Instruction Set Architecture (ISA).

CS270 - Spring 2013- Colorado State
University

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 ADD Instruction

Q@ LC-3 has 16-bit instructions.

Each instruction has a four-bit opcode, bits [15:12].

Q@ LC-3 has eight registers (R0O-R7) for temporary

storage.
= Sources and destination of ADD are registers.
15 14 13 12 11 10 9 8 7 6 B 4 3 2 1 0
ADD Dst Srcl 0|0 O] Src2

15

14 138 12 11 10 8 &8 T ® S 4 3 2 1 T

0

0011100100001 10

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

CS270 - Spring 2013- Colorado State

University 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 LDR Instruction
@ Load instruction -- reads data from memory

Q@ Base + offset mode:
= add offset to base register -- result is memory address
= load from memory address into destination register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
LDR Dst Base Offset

165 14 183 12 A1 10 B

8 7 6 0
0110010011 000110

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

CS270 - Spring 2013- Colorado State
University 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: FETCH

@ Load next instruction (at address stored
iIn PC) from memory into Instruction
Register (IR).
= Copy contents of PC into MAR.
=« Send “read” signal to memory.
= Copy contents of MDR into IR.

@ Then increment PC, so that it points to
the next instruction in sequence.
= PC becomes PC+1.

CS270 - Spring 2013- Colorado State
University

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: DECODE

@ First identify the opcode.

= In LC-3, this is always the first four bits of
Instruction.

= A 4-t0-16 decoder asserts a control line
corresponding to the desired opcode.

@ Depending on opcode, identify other
operands from the remaining bits.
« Example:
ofor LDR, last 6 bits is offset
@for ADD, last 3 bits is source operand #2

CS270 - Spring 2013- Colorado State
University

17

Copyright © The McGraw-Hill Companies, Inc. Permis required for reproduction or display

Instruction Processmg EVALUATE
ADDRESS

Q@ For instructions that require memory
access, compute address used for
access.

@ Examples:

= add offset to base register (as in LDR)
= add offset to PC
= add offset to zero

CS270 - Spring 2013- Colorado State
University

18

Copyright © The McGraw-Hill Companies, Inc. Permis required for reproduc or display

Instruction Processmg FETCH
OPERANDS

@ ODbtain source operands needed to
perform operation.

@ Examples:
= load data from memory (LDR)
= read data from register file (ADD)

CS270 - Spring 2013- Colorado State
University

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing: EXECUTE

@ Perform the operation,
using the source operands.

@ Examples:
= send operands to ALU and assert ADD signal
= do nothing (e.qg., for loads and stores)

CS270 - Spring 2013- Colorado State
University

20

Copyright © The McGraw-Hill Companies, Inc. Permis required for reproduction or display

Instruction Processmg STORE
RESULT

@ Write results to destination.
(register or memory)

@ Examples:
= result of ADD is placed in destination register

= result of memory load is placed in destination
register

« for store instruction, data is stored to memory
Qwrite address to MAR, data to MDR
@assert WRITE signal to memory

CS270 - Spring 2013- Colorado State
University

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Changing the Sequence of Instructions

Q@ In the FETCH phase,
we increment the Program Counter by 1.

@ What if we don’t want to always execute the
Instruction

that follows this one?
= examples: loop, if-then, function call

@ Need special instructions that change the contents
of the PC.

@ These are called control instructions.

= Jumps are unconditional -- they always change the PC

= branches are conditional -- they change the PC only if
some condition is true (e.g., the result of an ADD is
Zero)

CS270 - Spring 2013- Colorado State
University 22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example: LC-3 JMP Instruction

@ Set the PC to the value contained in a register.

This becomes the address of the next instruction
to fetch.

15 14 13 12 11 10 7

4 3 2 1 0
JMP \ooo\Base|oooooo

15 14 13 12 11 10 9 8 7

6 5 4 3 2 0
1100000011 000000

O

“Load the contents of R3 into the PC.”

CS270 - Spring 2013- Colorado State
University 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Instruction Processing Summary

@ Instructions look just like data -- it's all
Interpretation.

@ Three basic kinds of instructions:
= computational instructions (ADD, AND, ...)

=« data movement instructions (LD, ST, ...)
= control instructions (JMP, BRnz, ...)

@ Six basic phases of instruction processing:
F - D - EA-OP - EX S S

= nhot all phases are needed by every instruction
= phases may take variable number of machine cycles

CS270 - Spring 2013- Colorado State
University 24

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Control Unit State Diagram

Q@ The control unit is a state machine. Here is part of
a simplified state diagram for the LC-3:

MAR < PC
PC < PC +1
l e
\’DR [3 I]
E/IDR « M[MARﬂ Igﬁcﬁgl —
' N

[IR < MDR J
u A more complete state diagram is in Appendix C.
cs2tt wallribe e tinder stamdable after Chapter 5.

University 25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Stopping the Clock

@ Control unit will repeat instruction processing
seguence as long as clock is running.

= If not processing instructions from your application,
then it Is processing instructions from the Operating
System (OS).

= The OS is a special program Ge%'gfaktor CLOCK
that manages processor s o
and other resources. ;

@ To stop the computer: RUN
= AND the clock generator signal with ZERO

= When control unit stops seeing the CLOCK signal, it stops
processing.

CS270 - Spring 2013- Colorado State
University 26

