

Capyright 6 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.		Copyright 6 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Instruction Set Architecture		LC-3 Overview: Memory and Registers
 ISA = All of the programmer-visible components and operations of the computer memory organization address space how may locations can be addressed? addressibility how many bits per location? register set how many? what size? how are they used? Instruction set opcodes data types addressing modes 		 Memory address space: 2¹⁶ locations (16-bit addresses) addressability: 16 bits Registers temporary storage, accessed in a single machine cycle accessing memory takes longer than a single cycle eight general-purpose registers: R0 - R7 each 16 bits wide how many bits to uniquely identify a register?
 ISA provides all information needed for someone that wants to write a program in machine language 		 other registers ot directly addressable, but used by (and affected by) instructions
 or translate from a high-level language to machine language. 		• PC (program counter), condition codes
CS 270 - Fall Semester 2014	5	CS 270 - Fall Semester 2014 4

LC-3 Overview: Instruction Set

Opcodes

- 15 opcodes, 3 types of instructions
- Operate: ADD, AND, NOT
- Data movement: LD, LDI, LDR, LEA, ST, STR, STI
- Control: BR, JSR/JSRR, JMP, RTI, TRAP
- some opcodes set/clear condition codes, based on result: •N = negative, Z = zero, P = positive (> 0)

- Data Types
 16-bit 2's complement integer
- Addressing Modes
 - How is the location of an operand specified?
 - non-memory addresses: immediate, register
 - memory addresses: PC-relative, indirect, base+offset

CS 270 - Fall Semester 2014

Operate Instructions

Only three operations: ADD, AND, NOT

- Source and destination operands are registers
 - These instructions <u>do not</u> reference memory.
 - ADD and AND can use "immediate" mode, where one operand is hard-wired into the instruction.
- Will show dataflow diagram with each instruction.
 - illustrates <u>when</u> and <u>where</u> data moves to accomplish the desired operation

CS 270 - Fall Semester 2014

	Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduc	tion or display.
Example		
Address	Instruction	Comments
x30F6	1110001111111101	R1 ← PC - 3 = x30F4
x30F7	0001010001101110	R2 ← R1 + 14 = x3102
x30F8	0011010111111011	M[PC - 5] ← R2 M[x30F4] ← x3102
x30F9	<mark>0 1 0 1</mark> 0 1 0 0 1 0 1 0 0 0 0 0	R2 ← 0
x30FA	0001010010100101	R2 ← R2 + 5 = 5
x30FB	0111010001001110	M[R1+14] ← R2 M[x3102] ← 5
x30FC	1010011111110111 opcode	R3 ← M[M[x30F4]] R3 ← M[x3102] R3 ← 5
	CS 270 - Fall Semester 2014	23

anies. Inc. Permission r LEA (Immediate)

CS 270 - Fall Semester 2014

1

R[8:0]

PCoffset9

Register File

Dst

22

	Copyright © The McGraw-Hill Companies, Inc. Permission required for rep	roduction or display.
	Sample Progra	am
Address	Instruction	Comments
x3000	1110 <mark>001011111111</mark>	R1 ← x3100 (PC+0xFF)
x3001	01010111011100000	R3 ← 0
x3002	01010101000000	R2 ← 0
x3003	0001 <mark>010010101100</mark>	R2 ← 12
x3004	00000101000000101	If Z, goto x300A (PC+5)
x3005	0110100001000000	Load next value to R4
x3006	0001 <mark>011011000001</mark>	Add to R3
x3007	0001001001100001	Increment R1 (pointer)
X3008	0 0 0 1 <mark>0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1</mark>	Decrement R2 (counter)
x3009	0000 <mark>111111111010</mark>	Goto x3004 (PC-6)
	CS 270 - Fall Semester 2014	29

	Copyright @ The McGraw-Hill Companies, Inc. Permission required for	reproduction or display.
	Program (1 of	f 2)
Address	Instruction	Comments
x3000	0101010100000	R2 - 0 (counter)
x3001	0010011000010000	R3 ← M[x3102] (ptr)
x3002	1111000000100011	Input to R0 (TRAP x23)
x3003	0110001011000000	R1 ← M[R3]
x3004	0001100001111100	R4 ← R1 - 4 (EOT)
x3005	000000100000000000000000000000000000000	If Z, goto x300E
x3006	1001 <mark>0010011111111</mark>	R1 ← NOT R1
x3007	0001001001100001	R1 ← R1 + 1
X3008	0001001000000	R1 ← R1 + R0
x3009	0000101000000001	If N or P, goto x300B
	CS 270 - Fall Semester 2014	4 34

Address	Program (2 of 2)	Comments
Audress	Instruction	Comments
x300A	00010100010100001	R2 ← R2 + 1
x300B	0 0 0 1 <mark>0 1 1 0 1 1 1 0 0 0 0 1</mark>	R3 ← R3 + 1
x300C	0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0	R1 ← M[R3]
x300D	<mark>0 0 0 0</mark> 1 1 1 1 1 1 1 1 0 1 1 0	Goto x3004
x300E	<mark>0 0 1 0</mark> 0 0 0 0 0 0 0 0 0 1 0 0	R0 ← M[x3013]
x300F	000100000000000000000000000000000000000	R0 ← R0 + R2
x3010	<mark>1 1 1 1</mark> 0 0 0 0 0 0 1 0 0 0 0 1	Print R0 (TRAP x21)
x3011	<mark>1 1 1 1</mark> 0 0 0 0 0 0 1 0 0 1 0 1	HALT (TRAP x25)
X3012 Starting Address of File		
x3013	000000000110000	ASCII x30 ('0')

Data Path Components

Global bus

- special set of wires that carry a 16-bit signal to many components
- inputs to the bus are "tri-state devices", that only place a signal on the bus when they are enabled
- only one (16-bit) signal should be enabled at any time
 ontrol unit decides which signal "drives" the bus
- any number of components can read the bus
 - register only captures bus data if it is write-enabled by the control unit

Memory

- Control and data registers for memory and I/O devices
- memory: MAR, MDR (also control signal for read/write)

CS 270 - Fall Semester 2014

Data Path Components

ALU

37

- Accepts inputs from register file
- and from sign-extended bits from IR (immediate field). • Output goes to bus.
- used by condition code logic, register file, memory

Register File

- Two read addresses (SR1, SR2), one write address (DR)
- Input from bus
 - result of ALU operation or memory read
- Two 16-bit outputs
 - used by ALU, PC, memory address
 - data for store instructions passes through ALU

Data Path Components
Mathematical Action of the path of the

 Data Path Components
 Ocondition Code Logic
 Looks at value on bus and generates N, Z, P signals
 Registers set only when control unit enables them (LD.Cc)
 only certain instructions set the codes (ADD, AND, NOT, LD, LDI, LDR, LEA)
 Control Unit – Finite State Machine
 On each machine cycle, changes control signals for next phase of instruction processing
 which registers are write enabled? (LD.IR, LD.REG,)
 which operation should ALU perform? (ALUK)
 Logic includes decoder for opcode, etc.