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Debugging with High Level LanguagesDebugging with High Level Languages

Same goals as low-level debuggingSame goals as low-level debugging
 Examine and set values in memoryExamine and set values in memory
 Execute portions of programExecute portions of program
 Stop execution when (and where) desiredStop execution when (and where) desired

Want debugging tools to operate onWant debugging tools to operate on
high-level language constructshigh-level language constructs
 Examine and set variables, not memory locationsExamine and set variables, not memory locations
 Trace and set breakpoints on statements and function Trace and set breakpoints on statements and function 

calls, not instructionscalls, not instructions
 … … but also want access to low-level tools when neededbut also want access to low-level tools when needed
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Types of ErrorsTypes of Errors

Syntactic ErrorsSyntactic Errors
 Input code is not legalInput code is not legal
 Caught by compiler (or other translation mechanism)Caught by compiler (or other translation mechanism)

Semantic ErrorsSemantic Errors
 Legal code, but not what programmer intendedLegal code, but not what programmer intended
 Not caught by compiler, because syntax is correctNot caught by compiler, because syntax is correct

Algorithmic ErrorsAlgorithmic Errors
 Problem with the logic of the programProblem with the logic of the program
 Program does what programmer intended, Program does what programmer intended, 

but it doesn’t solve the right problembut it doesn’t solve the right problem
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Syntactic ErrorsSyntactic Errors
Common errors:Common errors:
 missing semicolon or bracemissing semicolon or brace
 mis-spelled type in declarationmis-spelled type in declaration

One mistake can cause an avalanche of errorsOne mistake can cause an avalanche of errors
 because compiler can’t recover and gets confused because compiler can’t recover and gets confused 

int main () {int main () {
  int i  int i
  int j;  int j;
  for (i = 0; i <= 10; i++) {  for (i = 0; i <= 10; i++) {
    j = i * 7;    j = i * 7;
    printf("%d x 7 = %d\n", i, j);    printf("%d x 7 = %d\n", i, j);
  }  }
}}

missing semicolon
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Semantic ErrorsSemantic Errors
Common ErrorsCommon Errors
 Missing braces to group statements togetherMissing braces to group statements together
 Confusing assignment with equalityConfusing assignment with equality
 Wrong assumptions about precedence/associativityWrong assumptions about precedence/associativity
 Wrong limits on for-loop counterWrong limits on for-loop counter
 Uninitialized variablesUninitialized variables

int main () {int main () {
  int i  int i
  int j;  int j;
  for (i = 0; i <= 10; i++)   for (i = 0; i <= 10; i++) 
    j = i * 7;    j = i * 7;
    printf("%d x 7 = %d\n", i, j);    printf("%d x 7 = %d\n", i, j);
}}

missing braces,
so printf not part of if
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Algorithmic ErrorsAlgorithmic Errors

Design is wrong, so program does not solve the Design is wrong, so program does not solve the 
correct problemcorrect problem

Difficult to findDifficult to find
 Program does what we intendedProgram does what we intended
 Problem might not show up until after many runsProblem might not show up until after many runs

Maybe difficult to fixMaybe difficult to fix
 May have to redesignMay have to redesign
 May have large impact on program codeMay have large impact on program code

Classic example: Y2K bugClassic example: Y2K bug
 only allow 2 digits for year, assuming 19__only allow 2 digits for year, assuming 19__
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Debugging TechniquesDebugging Techniques
Ad-HocAd-Hoc
 Insert printf statements to track control flow and display valuesInsert printf statements to track control flow and display values
 Add code to explicitly check for values out of expected range, incorrect Add code to explicitly check for values out of expected range, incorrect 

branches, etc.branches, etc.
 Advantage:Advantage:

  No special debugging tools neededNo special debugging tools needed
 Disadvantages:Disadvantages:

• Frequent recompile and execute cycles makes this method time-consumingFrequent recompile and execute cycles makes this method time-consuming
• Requires intimate knowledge of codeRequires intimate knowledge of code

• Inserted code can be buggyInserted code can be buggy

Source-Level DebuggerSource-Level Debugger
 Examine and set variable valuesExamine and set variable values
 Tracing, breakpoints, single-stepping on source-code statementsTracing, breakpoints, single-stepping on source-code statements
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Source-Level DebuggerSource-Level Debugger

main window
of Cygwin
version of gdb
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Source-Level Debugging TechniquesSource-Level Debugging Techniques
BreakpointsBreakpoints
 Stop when a particular statement is reachedStop when a particular statement is reached
 Stop at entry or exit of a functionStop at entry or exit of a function
 Conditional breakpoints:Conditional breakpoints:

Stop if a variable is equal to a specific value, etc.Stop if a variable is equal to a specific value, etc.
 Watchpoints:Watchpoints:

Stop when a variable is set to a specific valueStop when a variable is set to a specific value

Single-SteppingSingle-Stepping
 Execute one statement at a timeExecute one statement at a time
 Step “into” or step “over” function callsStep “into” or step “over” function calls

StepStep  intointo: next statement is first inside function call: next statement is first inside function call
StepStep  overover: execute function without stopping: execute function without stopping
StepStep  outout: finish executing function, stop on exit: finish executing function, stop on exit
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Source-Level Debugging TechniquesSource-Level Debugging Techniques

Displaying ValuesDisplaying Values
 Show value consistent with declared type of variableShow value consistent with declared type of variable
 Dereference pointers (variables that hold addresses)Dereference pointers (variables that hold addresses)

• See Chapter 16See Chapter 16
 Inspect parts of a data structureInspect parts of a data structure

• See Chapters 19See Chapters 19


