
Chapter 15Chapter 15
DebuggingDebugging

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Debugging with High Level LanguagesDebugging with High Level Languages

Same goals as low-level debuggingSame goals as low-level debugging
 Examine and set values in memoryExamine and set values in memory
 Execute portions of programExecute portions of program
 Stop execution when (and where) desiredStop execution when (and where) desired

Want debugging tools to operate onWant debugging tools to operate on
high-level language constructshigh-level language constructs
 Examine and set variables, not memory locationsExamine and set variables, not memory locations
 Trace and set breakpoints on statements and function Trace and set breakpoints on statements and function

calls, not instructionscalls, not instructions
 … … but also want access to low-level tools when neededbut also want access to low-level tools when needed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Types of ErrorsTypes of Errors

Syntactic ErrorsSyntactic Errors
 Input code is not legalInput code is not legal
 Caught by compiler (or other translation mechanism)Caught by compiler (or other translation mechanism)

Semantic ErrorsSemantic Errors
 Legal code, but not what programmer intendedLegal code, but not what programmer intended
 Not caught by compiler, because syntax is correctNot caught by compiler, because syntax is correct

Algorithmic ErrorsAlgorithmic Errors
 Problem with the logic of the programProblem with the logic of the program
 Program does what programmer intended, Program does what programmer intended,

but it doesn’t solve the right problembut it doesn’t solve the right problem

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

44CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Syntactic ErrorsSyntactic Errors
Common errors:Common errors:
 missing semicolon or bracemissing semicolon or brace
 mis-spelled type in declarationmis-spelled type in declaration

One mistake can cause an avalanche of errorsOne mistake can cause an avalanche of errors
 because compiler can’t recover and gets confused because compiler can’t recover and gets confused

int main () {int main () {
 int i int i
 int j; int j;
 for (i = 0; i <= 10; i++) { for (i = 0; i <= 10; i++) {
 j = i * 7; j = i * 7;
 printf("%d x 7 = %d\n", i, j); printf("%d x 7 = %d\n", i, j);
 } }
}}

missing semicolon

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

55CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Semantic ErrorsSemantic Errors
Common ErrorsCommon Errors
 Missing braces to group statements togetherMissing braces to group statements together
 Confusing assignment with equalityConfusing assignment with equality
 Wrong assumptions about precedence/associativityWrong assumptions about precedence/associativity
 Wrong limits on for-loop counterWrong limits on for-loop counter
 Uninitialized variablesUninitialized variables

int main () {int main () {
 int i int i
 int j; int j;
 for (i = 0; i <= 10; i++) for (i = 0; i <= 10; i++)
 j = i * 7; j = i * 7;
 printf("%d x 7 = %d\n", i, j); printf("%d x 7 = %d\n", i, j);
}}

missing braces,
so printf not part of if

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

66CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Algorithmic ErrorsAlgorithmic Errors

Design is wrong, so program does not solve the Design is wrong, so program does not solve the
correct problemcorrect problem

Difficult to findDifficult to find
 Program does what we intendedProgram does what we intended
 Problem might not show up until after many runsProblem might not show up until after many runs

Maybe difficult to fixMaybe difficult to fix
 May have to redesignMay have to redesign
 May have large impact on program codeMay have large impact on program code

Classic example: Y2K bugClassic example: Y2K bug
 only allow 2 digits for year, assuming 19__only allow 2 digits for year, assuming 19__

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

77CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Debugging TechniquesDebugging Techniques
Ad-HocAd-Hoc
 Insert printf statements to track control flow and display valuesInsert printf statements to track control flow and display values
 Add code to explicitly check for values out of expected range, incorrect Add code to explicitly check for values out of expected range, incorrect

branches, etc.branches, etc.
 Advantage:Advantage:

 No special debugging tools neededNo special debugging tools needed
 Disadvantages:Disadvantages:

• Frequent recompile and execute cycles makes this method time-consumingFrequent recompile and execute cycles makes this method time-consuming
• Requires intimate knowledge of codeRequires intimate knowledge of code

• Inserted code can be buggyInserted code can be buggy

Source-Level DebuggerSource-Level Debugger
 Examine and set variable valuesExamine and set variable values
 Tracing, breakpoints, single-stepping on source-code statementsTracing, breakpoints, single-stepping on source-code statements

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

88CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Source-Level DebuggerSource-Level Debugger

main window
of Cygwin
version of gdb

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

99CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Source-Level Debugging TechniquesSource-Level Debugging Techniques
BreakpointsBreakpoints
 Stop when a particular statement is reachedStop when a particular statement is reached
 Stop at entry or exit of a functionStop at entry or exit of a function
 Conditional breakpoints:Conditional breakpoints:

Stop if a variable is equal to a specific value, etc.Stop if a variable is equal to a specific value, etc.
 Watchpoints:Watchpoints:

Stop when a variable is set to a specific valueStop when a variable is set to a specific value

Single-SteppingSingle-Stepping
 Execute one statement at a timeExecute one statement at a time
 Step “into” or step “over” function callsStep “into” or step “over” function calls

StepStep intointo: next statement is first inside function call: next statement is first inside function call
StepStep overover: execute function without stopping: execute function without stopping
StepStep outout: finish executing function, stop on exit: finish executing function, stop on exit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1010CS270 - Fall 2014 - Colorado State UniversityCS270 - Fall 2014 - Colorado State University

Source-Level Debugging TechniquesSource-Level Debugging Techniques

Displaying ValuesDisplaying Values
 Show value consistent with declared type of variableShow value consistent with declared type of variable
 Dereference pointers (variables that hold addresses)Dereference pointers (variables that hold addresses)

• See Chapter 16See Chapter 16
 Inspect parts of a data structureInspect parts of a data structure

• See Chapters 19See Chapters 19

