
Chapter 19Chapter 19
Data StructuresData Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Data StructuresData Structures

A A data structuredata structure is a particular organization is a particular organization
of data in memory.of data in memory.
 We want to group related items together.We want to group related items together.
 We want to organize these data bundles in a way that We want to organize these data bundles in a way that

is convenient to program and efficient to execute.is convenient to program and efficient to execute.

An An arrayarray is one kind of data structure. is one kind of data structure.

In this chapter, we look at two more:In this chapter, we look at two more:
 structstruct – directly supported by C – directly supported by C
 linked listlinked list – built from – built from structstruct and dynamic allocation and dynamic allocation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Structures in CStructures in C
A A structstruct is a mechanism for grouping together is a mechanism for grouping together
related data items of related data items of different typesdifferent types..
 Recall that an array groups items of a single type.Recall that an array groups items of a single type.

 Example: We want to represent an airborne aircraft:Example: We want to represent an airborne aircraft:

 char flightNum[7];char flightNum[7];
int altitude;int altitude;
int longitude;int longitude;
int latitude;int latitude;
int heading;int heading;
double airSpeed;double airSpeed;

 We can use a We can use a structstruct to group data fields for each to group data fields for each
plane in a single named entity.plane in a single named entity.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

44CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Defining a StructDefining a Struct
We first need to define a new type for the compilerWe first need to define a new type for the compiler
and tell it what our struct looks like.and tell it what our struct looks like.

struct flightType {struct flightType {
char flightNum[7]; /* max 6 characters */char flightNum[7]; /* max 6 characters */
int altitude; /* in meters */int altitude; /* in meters */
int longitude; /* in tenths of degrees */int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */double airSpeed; /* in km/hr */

};};

 This tells the compiler This tells the compiler how bighow big our struct is and our struct is and
how the different data items (“members”) are how the different data items (“members”) are laid out in memorylaid out in memory..

 But it does not But it does not allocateallocate any memory. any memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

55CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Declaring and Using a StructDeclaring and Using a Struct
To allocate memory for a struct, To allocate memory for a struct,
we declare a variable using our new data type.we declare a variable using our new data type.

 struct flightType plane;struct flightType plane;

Memory is allocated,and we Memory is allocated,and we
can access individual members can access individual members
of this variable:of this variable:

 plane.airSpeed = 800.0;plane.airSpeed = 800.0;

 plane.altitude = 10000;plane.altitude = 10000;

A struct’s members are laid A struct’s members are laid
out in the order specified by out in the order specified by
the definition.the definition.

plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

66CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Defining and Declaring at OnceDefining and Declaring at Once
You can both define and declare a struct at the same time.You can both define and declare a struct at the same time.

 struct flightType struct flightType
 {{
 char flightNum[7]; /* max 6 characters */char flightNum[7]; /* max 6 characters */
 int altitude; /* in meters */int altitude; /* in meters */
 int longitude; /* in tenths of degrees */int longitude; /* in tenths of degrees */
 int latitude; /* in tenths of degrees */int latitude; /* in tenths of degrees */
 int heading; /* in tenths of degrees */int heading; /* in tenths of degrees */
 double airSpeed; /* in km/hr */double airSpeed; /* in km/hr */
 } maverick;} maverick;

And you can use flightType to declare other structs.And you can use flightType to declare other structs.
 struct flightType iceMan;struct flightType iceMan;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

77CS270 - Fall Semester 2014CS270 - Fall Semester 2014

typedeftypedef

C provides a way to define a data type by giving a new C provides a way to define a data type by giving a new
name to a predefined type.name to a predefined type.

 Syntax:Syntax:

 typedef <type> <name>;typedef <type> <name>;

 Examples:Examples:

 typedef int Color;typedef int Color;

 typedef struct flightType WeatherData;typedef struct flightType WeatherData;

 typedef struct ab_type {typedef struct ab_type {
 int a; int a;
 double b; double b;
 } ABGroup; } ABGroup;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

88CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Using typedefUsing typedef

This gives us a way to make code more readableThis gives us a way to make code more readable
by giving application-specific names to types.by giving application-specific names to types.

 Color pixels[500];Color pixels[500];

 Flight plane1, plane2;Flight plane1, plane2;

Typical practiceTypical practice

 Put typedef’s into a header file, and use type names in main Put typedef’s into a header file, and use type names in main
program. If the definition of Color/Flight changes, you might not program. If the definition of Color/Flight changes, you might not
need to change the code in your main program file.need to change the code in your main program file.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

99CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Generating Code for StructsGenerating Code for Structs
Suppose our program starts out like this:Suppose our program starts out like this:

 int x;int x;

 Flight plane;Flight plane;

 int y;int y;

 plane.altitude = 0;plane.altitude = 0;

 LC-3 code for this assignment:LC-3 code for this assignment:

 AND R1, R1, #0AND R1, R1, #0

 ADD R0, R5, #-13 ; R0=planeADD R0, R5, #-13 ; R0=plane

 STR R1, R0, #7 ; 8th wordSTR R1, R0, #7 ; 8th word

y
plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

xR5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1010CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Array of StructsArray of Structs

Can declare an array of structs:Can declare an array of structs:

 Flight planes[100];Flight planes[100];

 Each array element is a struct (7 words, in this case).Each array element is a struct (7 words, in this case).
 To access member of a particular element:To access member of a particular element:

 planes[34].altitude = 10000;planes[34].altitude = 10000;

Because [] and . operators have the same precedence, Because [] and . operators have the same precedence,
and both associate left-to-right, this is the same as:and both associate left-to-right, this is the same as:

 (planes[34]).altitude = 10000;(planes[34]).altitude = 10000;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1111CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Pointer to StructPointer to Struct
We can declare and create a pointer to a struct:We can declare and create a pointer to a struct:

 Flight *planePtr;Flight *planePtr;

 planePtr = &planes[34];planePtr = &planes[34];
 To access a member of the struct addressed by To access a member of the struct addressed by

pointer:pointer:

 (*planePtr).altitude = 10000(*planePtr).altitude = 10000;;
 Because the . operator has higher precedence than *,Because the . operator has higher precedence than *,

this is this is NOTNOT the same as: the same as:

 *planePtr.altitude = 10000;*planePtr.altitude = 10000;

C provides special syntax for accessing a struct memberC provides special syntax for accessing a struct member
through a pointer:through a pointer:

 planePtr->altitude = 10000;planePtr->altitude = 10000;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1212CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Passing Structs as ArgumentsPassing Structs as Arguments
Unlike an array, a struct is always Unlike an array, a struct is always passed by valuepassed by value
into a function.into a function.
 This means the struct members are copied toThis means the struct members are copied to

the function’s activation record, and changes inside the the function’s activation record, and changes inside the
function are not reflected in the calling routine’s copy.function are not reflected in the calling routine’s copy.

Most of the time, you’ll want to pass a Most of the time, you’ll want to pass a pointerpointer to a struct. to a struct.
 int Collide(Flight *planeA, Flight *planeB)int Collide(Flight *planeA, Flight *planeB)

{{
 if (planeA->altitude == planeB->altitude) { if (planeA->altitude == planeB->altitude) {

 } }
 else else
 return 0; return 0;
}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1313CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Dynamic AllocationDynamic Allocation

Suppose we want our weather program to handle Suppose we want our weather program to handle
a a variable number of planesvariable number of planes – as many as the user – as many as the user
wants to enter.wants to enter.
 We can’t allocate an array, because we don’t know We can’t allocate an array, because we don’t know

the maximum number of planes that might be the maximum number of planes that might be
required.required.

 Even if we do know the maximum number, it might be Even if we do know the maximum number, it might be
wasteful to allocate that much memory because most wasteful to allocate that much memory because most
of the time only a few planes’ worth of data is needed.of the time only a few planes’ worth of data is needed.

 Solution:Solution:
Allocate storage for data dynamically, as needed.Allocate storage for data dynamically, as needed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1414CS270 - Fall Semester 2014CS270 - Fall Semester 2014

mallocmalloc

The Standard C Library provides a function forThe Standard C Library provides a function for
allocating memory at run-time: allocating memory at run-time: mallocmalloc..

 void *malloc(size_t numBytes);void *malloc(size_t numBytes);

It returns a It returns a generic pointergeneric pointer ((void*void*) to a contiguous) to a contiguous
region of memory of the requested size (in bytes).region of memory of the requested size (in bytes).

The bytes are allocated from a region in memoryThe bytes are allocated from a region in memory
called the called the heapheap. .
 The run-time system keeps track of chunks of The run-time system keeps track of chunks of

memory from the heap that have been allocated.memory from the heap that have been allocated.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1515CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Using mallocUsing malloc

To use malloc, we need to know how many bytesTo use malloc, we need to know how many bytes
to allocate. The to allocate. The sizeofsizeof operator asks the compiler to operator asks the compiler to
calculate the size of a particular type.calculate the size of a particular type.

 planes = malloc(n * sizeof(Flight));planes = malloc(n * sizeof(Flight));

We We maymay (but don’t have to, because (but don’t have to, because void *void * is special) is special)
change the type of the return value to the proper kind of change the type of the return value to the proper kind of
pointer – this is called “pointer – this is called “castingcasting.”.”

 planes = planes =
 (Flight*) malloc(n* sizeof(Flight)); (Flight*) malloc(n* sizeof(Flight));

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1616CS270 - Fall Semester 2014CS270 - Fall Semester 2014

ExampleExample

 int airbornePlanes;int airbornePlanes;
Flight *planes;Flight *planes;

printf("How many planes are in the air?");printf("How many planes are in the air?");
scanf("%d", &airbornePlanes);scanf("%d", &airbornePlanes);

planes = planes =
 malloc(sizeof(Flight)*airbornePlanes); malloc(sizeof(Flight)*airbornePlanes);
if (planes == NULL) {if (planes == NULL) {
 printf("Error in allocating the data array.\n"); printf("Error in allocating the data array.\n");

}}
planes[0].altitude = ...planes[0].altitude = ...

If allocation fails,
malloc returns NULL.

Note: Can use array notation
or pointer notation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1717CS270 - Fall Semester 2014CS270 - Fall Semester 2014

free and callocfree and calloc

Once the data is no longer needed,Once the data is no longer needed,
it should be released back into the heap for later use.it should be released back into the heap for later use.
 This is done using the This is done using the freefree function, passing it the function, passing it the

same address that was returned by malloc.same address that was returned by malloc.

 void free(void*);void free(void*);

 If allocated data is not freed, the program might run If allocated data is not freed, the program might run
out of heap memory and be unable to continue.out of heap memory and be unable to continue.

 Sometimes we prefer to initialize allocated memory to Sometimes we prefer to initialize allocated memory to
zeros, zeros, calloccalloc function does this: function does this:

void *calloc(size_t count, size_t size);void *calloc(size_t count, size_t size);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1818CS270 - Fall Semester 2014CS270 - Fall Semester 2014

The Linked List Data StructureThe Linked List Data Structure

A A linked listlinked list is an ordered collection of is an ordered collection of nodesnodes,,
each of which contains some data,each of which contains some data,
connected using connected using pointerspointers..
 Each node points to the next node in the list.Each node points to the next node in the list.
 The first node in the list is called the The first node in the list is called the headhead..
 The last node in the list is called the The last node in the list is called the tailtail..

Node 0 Node 1 Node 2

NULL

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

1919CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Linked List vs. ArrayLinked List vs. Array

A linked list can only be accessed A linked list can only be accessed sequentiallysequentially..

To find the 5To find the 5thth element, for instance, element, for instance,
you must start from the head and follow the linksyou must start from the head and follow the links
through four other nodes.through four other nodes.

Advantages of linked list:Advantages of linked list:
 Dynamic sizeDynamic size
 Easy to add additional nodes as neededEasy to add additional nodes as needed
 Easy to add or remove nodes from the middle of the Easy to add or remove nodes from the middle of the

list (just add or redirect links)list (just add or redirect links)

Advantage of array:Advantage of array:
 Can easily and quickly access arbitrary elementsCan easily and quickly access arbitrary elements

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2020CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Example: Car LotExample: Car Lot

Create an inventory database for a used car lot.Create an inventory database for a used car lot.
Support the following actions:Support the following actions:
 SearchSearch the database for a particular vehicle. the database for a particular vehicle.
 AddAdd a new car to the database. a new car to the database.
 DeleteDelete a car from the database. a car from the database.

The database must remain sorted by vehicle ID.The database must remain sorted by vehicle ID.

Since we don’t know how many cars might be on the lotSince we don’t know how many cars might be on the lot
at one time, we choose a linked list representation.at one time, we choose a linked list representation.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2121CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Car data structureCar data structure
Each car has the following characterics:Each car has the following characterics:
vehicle ID, make, model, year, mileage, cost.vehicle ID, make, model, year, mileage, cost.

Because it’s a linked list, we also need a pointer toBecause it’s a linked list, we also need a pointer to
the next node in the list:the next node in the list:

 typedef struct carType Car;typedef struct carType Car;

struct carType {struct carType {
 int vehicleID; int vehicleID;
 char make[20]; char make[20];
 char model[20]; char model[20];
 int year; int year;
 int mileage; int mileage;
 double cost; double cost;
 Car *next; /* ptr to next car in list */ Car *next; /* ptr to next car in list */
}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2222CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Scanning the ListScanning the List
Searching, adding, and deleting all require us toSearching, adding, and deleting all require us to
find a particular node in the list. We find a particular node in the list. We scanscan the list until the list until
we find a node whose ID is >= the one we’re looking for.we find a node whose ID is >= the one we’re looking for.

Car * ScanList(Car *head, int searchID)Car * ScanList(Car *head, int searchID)
{{
 Car *previous, *current; Car *previous, *current;
 previous = head; previous = head;
 current = head->next; current = head->next;
 /* Traverse until ID >= searchID */ /* Traverse until ID >= searchID */
 while ((current!=NULL) while ((current!=NULL)
 && (current->vehicleID < searchID)) { && (current->vehicleID < searchID)) {
 previous = current; previous = current;
 current = current->next; current = current->next;
 } }
 return previous; return previous;
}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2323CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Adding a NodeAdding a Node

Create a new node with the proper info.Create a new node with the proper info.
Find the node (if any) with a greater vehicleID.Find the node (if any) with a greater vehicleID.
“Splice” the new node into the list:“Splice” the new node into the list:

Node 0 Node 1 Node 2

NULL

new node

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2424CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Excerpts from Code to Add a NodeExcerpts from Code to Add a Node

 newNode = malloc(sizeof(Car));newNode = malloc(sizeof(Car));
/* initialize node with new car info *//* initialize node with new car info */
......
prevNode = ScanList(head, newNode->vehicleID);prevNode = ScanList(head, newNode->vehicleID);
nextNode = prevNode->next;nextNode = prevNode->next;

if ((nextNode == NULL)if ((nextNode == NULL)
 || (nextNode->vehicleID != newNode->vehicleID)) || (nextNode->vehicleID != newNode->vehicleID))
 prevNode->next = newNode; prevNode->next = newNode;
 newNode->next = nextNode; newNode->next = nextNode;
}}
else {else {
 printf("Car already exists in database."); printf("Car already exists in database.");
 free(newNode); free(newNode);
}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2525CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Deleting a NodeDeleting a Node

Find the node that Find the node that points topoints to the desired node. the desired node.
Redirect that node’s pointer to the next node (or NULL).Redirect that node’s pointer to the next node (or NULL).
Free the deleted node’s memory.Free the deleted node’s memory.

Node 0 Node 1 Node 2

NULL

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2626CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Excerpts from Code to Delete a NodeExcerpts from Code to Delete a Node

 printf("Enter vehicle ID of car to delete:\n");printf("Enter vehicle ID of car to delete:\n");
scanf("%d", vehicleID);scanf("%d", vehicleID);

prevNode = ScanList(head, vehicleID);prevNode = ScanList(head, vehicleID);
delNode = prevNode->next;delNode = prevNode->next;

if ((delNode != NULL)if ((delNode != NULL)
 && (delNode->vehicleID == vehicleID)) && (delNode->vehicleID == vehicleID))
 prevNode->next = delNode->next; prevNode->next = delNode->next;
 free(delNode); free(delNode);
}}
else {else {
 printf("Vehicle not found in database.\n"); printf("Vehicle not found in database.\n");
}}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2727CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Building on Linked ListsBuilding on Linked Lists

The linked list is a fundamental data structure.The linked list is a fundamental data structure.
 DynamicDynamic
 Easy to add and delete nodesEasy to add and delete nodes

The concepts described here will be helpfulThe concepts described here will be helpful
when learning about more elaborate data structures:when learning about more elaborate data structures:
 TreesTrees
 Hash TablesHash Tables
 Directed Acyclic GraphsDirected Acyclic Graphs


