
C versus C++C versus C++
(Procedural Programming (Procedural Programming
versus Object Oriented)versus Object Oriented)

Original slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

C Versus C++C Versus C++
Question: Aren’t they really almost the same language? Question: Aren’t they really almost the same language?
Isn’t C++ just a superset of C? Answer: No, C++ is very Isn’t C++ just a superset of C? Answer: No, C++ is very
different and immensely more powerful than C. different and immensely more powerful than C.

Question: Can I take my C programs and turn then into Question: Can I take my C programs and turn then into
C++ by adding objects around everything? Answer: Yes, C++ by adding objects around everything? Answer: Yes,
but there’s lots more to C++ than just object-oriented C.but there’s lots more to C++ than just object-oriented C.

Question: Can I ignore C++ and move on to Java? Isn’t Question: Can I ignore C++ and move on to Java? Isn’t
that what everyone programs in now? Answer: Maybe, it that what everyone programs in now? Answer: Maybe, it
depends on where you work and what you do.depends on where you work and what you do.

Question: Does the instructor of this course think that C++ Question: Does the instructor of this course think that C++
is an amazing language. Answer: Of course, however I is an amazing language. Answer: Of course, however I
am aware that C++ has its own set of arcane problems.am aware that C++ has its own set of arcane problems.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

C LanguageC Language
What does the C language provide? Variables, constants, What does the C language provide? Variables, constants,
simple data types, compound data types, operators, control simple data types, compound data types, operators, control
flow, pointers, functions.flow, pointers, functions.

What is the structure of a C program? Really just an entry What is the structure of a C program? Really just an entry
point, functions, and global data. Any function can call all point, functions, and global data. Any function can call all
other functions, anytime. Same is true for data access.other functions, anytime. Same is true for data access.

What does the C language not provide? Objects, interfaces, What does the C language not provide? Objects, interfaces,
encapsulation, inheritance, and standard mechanisms for encapsulation, inheritance, and standard mechanisms for
threading, mutexes, semaphores, sockets, and timers. Also threading, mutexes, semaphores, sockets, and timers. Also
no containers and algorithms.no containers and algorithms.

Four ‘C’ dilemmas: 1) how to organize procedural code, 2) Four ‘C’ dilemmas: 1) how to organize procedural code, 2)
how to make programs portable, and 3) how to avoid writing how to make programs portable, and 3) how to avoid writing
defects, including pointer and memory management bugs!defects, including pointer and memory management bugs!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Spaghetti CodeSpaghetti Code

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Layered ArchitectureLayered Architecture

msdn.microsoft.com

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Procedural ProgrammingProcedural Programming

Much effort has been spent trying to develop solutions that Much effort has been spent trying to develop solutions that
allow organization of procedural programs:allow organization of procedural programs:
 Define interfaces using application programming Define interfaces using application programming

interfaces (APIs) to divide architectural layers.interfaces (APIs) to divide architectural layers.
 Organize functions to maximize cohesion and minimize Organize functions to maximize cohesion and minimize

coupling between modules.coupling between modules.
 Create header files with related functions, essentially Create header files with related functions, essentially

the equivalent of an object-oriented interface.the equivalent of an object-oriented interface.
 Avoid the use of global variables, group related data Avoid the use of global variables, group related data

items into structures which can carefully managed.items into structures which can carefully managed.

Does this solve the problem? Only if a disciplined Does this solve the problem? Only if a disciplined
approach is maintained, but this is rarely the case (in my approach is maintained, but this is rarely the case (in my
experience).experience).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Object Oriented LanguagesObject Oriented Languages

Group data and code into a single entity called an object, Group data and code into a single entity called an object,
allowing encapsulation of complex internals.allowing encapsulation of complex internals.

Key concept: separation of interface from implementation, Key concept: separation of interface from implementation,
allows an abstraction of functionality.allows an abstraction of functionality.

Architects draw a block diagram of the entire system and Architects draw a block diagram of the entire system and
identify and design interfaces.identify and design interfaces.

Public, protected, and private classification apply to data Public, protected, and private classification apply to data
or methods within the object.or methods within the object.

Common practice: never allow external access to data Common practice: never allow external access to data
objects, supply get and set methods instead.objects, supply get and set methods instead.

OO languages facilitate achieving low coupling which is OO languages facilitate achieving low coupling which is
enforced by the language itself.enforced by the language itself.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Object DeclarationObject Declaration

class Clookup {class Clookup {

public:public:

 void construct(vector<sTable> vTables, U32 void construct(vector<sTable> vTables, U32
uLutSize);uLutSize);

 void generate(string sPreamble);void generate(string sPreamble);

 void replace(string sReplace);void replace(string sReplace);

private:private:

 void analyze(Eanalysis eAnalysis, U32 uLut);void analyze(Eanalysis eAnalysis, U32 uLut);

 vector<sTable> m_vTables;vector<sTable> m_vTables;

 vector<sVariable> m_vVariables;vector<sVariable> m_vVariables;

 U32 m_uLutSize;U32 m_uLutSize;

};};

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

Other C++ FeaturesOther C++ Features
C++ standard template library (STL): completely new C++ standard template library (STL): completely new
containers and associated algorithms:containers and associated algorithms:
 vector, list, deque, set, multiset, hash containersvector, list, deque, set, multiset, hash containers
 find, count, sort, search, merge, count, boundfind, count, sort, search, merge, count, bound

C++ strings: a complete revision to the C character array C++ strings: a complete revision to the C character array
and string functions, much more like Java:and string functions, much more like Java:
 stringstring

C++ iostream library, a complete revision of the C C++ iostream library, a complete revision of the C
functions for input/output, but native to C++:functions for input/output, but native to C++:
 ios, istream, iostream, fstream, sstreamios, istream, iostream, fstream, sstream

C++ memory management: a complete revision to the C C++ memory management: a complete revision to the C
malloc and free interface, but still explicit!malloc and free interface, but still explicit!
 new, delete new, delete

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

C++ Missing FeaturesC++ Missing Features
As compared to Java:As compared to Java:

Standard syntax for socketsStandard syntax for sockets

Standard syntax for threadingStandard syntax for threading

Standard syntax for synchronization (mutex, semaphore)Standard syntax for synchronization (mutex, semaphore)

Standard syntax for timingStandard syntax for timing

Thus all of these remain operating system dependent!Thus all of these remain operating system dependent!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

C++ Strings ExampleC++ Strings Example
 #include <string>#include <string>

 string s1 = "This is ";string s1 = "This is ";

 string s2 = "a string";string s2 = "a string";

 string s3 = s1 + s2; // string concatenationstring s3 = s1 + s2; // string concatenation

 if (s1 == s2) // string comparisonif (s1 == s2) // string comparison

 int len = s3.length(); // string lengthint len = s3.length(); // string length

 string s4 = s3.substr(0,5); // extract substringstring s4 = s3.substr(0,5); // extract substring

 int i = s3.find("is", 0); // find substringint i = s3.find("is", 0); // find substring

 s3.erase(3, 7); // erase substrings3.erase(3, 7); // erase substring

 const char *oldstr = s3.c_str(); // C stringconst char *oldstr = s3.c_str(); // C string

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

C++ Vector ExampleC++ Vector Example
#include <vector>#include <vector>

vector<int> vIntegers;vector<int> vIntegers;

vector<float> vFloats;vector<float> vFloats;

vector<string> vStrings;vector<string> vStrings;

vIntegers.clear(); // clear the vectorvIntegers.clear(); // clear the vector

vIntegers.push_back(1234); // add an entryvIntegers.push_back(1234); // add an entry

vIntegers.push_back(3456); // add an entryvIntegers.push_back(3456); // add an entry

vIntegers.size(); // return the sizevIntegers.size(); // return the size

vIntegers[0]; or vIntegers.at(0); // access elementvIntegers[0]; or vIntegers.at(0); // access element

vIntegers.insert(0, 2345); // insert elementvIntegers.insert(0, 2345); // insert element

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2014CS270 - Fall Semester 2014

C++ Streams ExampleC++ Streams Example
#include <fstream>#include <fstream>

void Cfile::Read(const string &infile,void Cfile::Read(const string &infile,

 vector<Cartesian> &vPoints) {vector<Cartesian> &vPoints) {

 ifstream inputFile(infile.c_str());ifstream inputFile(infile.c_str());

 if (inputFile) {if (inputFile) {

 Cartesian pt;Cartesian pt;

 while (inputFile >> pt.xCoord >> pt.yCoordwhile (inputFile >> pt.xCoord >> pt.yCoord

 >> pt.zCoord)>> pt.zCoord)

 vPoints.push_back(pt);vPoints.push_back(pt);

 }}

 // inputFile.close();// inputFile.close();

}}

