
1

Chapter 2
Bits, Data Types,
and Operations

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall Semester 2014

How do we represent data in a
computer?

! At the lowest level, a computer is an electronic
machine.

n  works by controlling the flow of electrons
! Easy to recognize two conditions:

1.  presence of a voltage – we’ll call this state “1”
2.  absence of a voltage – we’ll call this state “0”

! Could base state on value of voltage,
but control and detection circuits more complex.

n  compare turning on a light switch to
measuring or regulating voltage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall Semester 2014

Computer is a binary digital system.

! Basic unit of information is the binary digit, or bit.
! Values with >2 states require multiple bits.

n  A collection of two bits has four possible states:
00, 01, 10, 11

n  A collection of three bits has eight possible states:
000, 001, 010, 011, 100, 101, 110, 111

n  A collection of n bits has 2n possible states.

Binary (base two) system:
•  has two states: 0 and 1

Digital system:
•  finite number of symbols

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall Semester 2014

What kinds of data do we need to
represent?

n  Numbers – signed, unsigned, integers, floating point,
complex, rational, irrational, …

n  Text – characters, strings, …
n  Logical – true, false
n  Images – pixels, colors, shapes, …
n  Sound – wave forms
n  Instructions
n  …

! Data type:
n  representation and operations within the computer

! We’ll start with numbers…

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall Semester 2014

Unsigned Integers

! Non-positional notation
n  could represent a number (“5”) with a string of ones

(“11111”)
n  problems?

! Weighted positional notation
n  like decimal numbers: “329”
n  “3” is worth 300, because of its position, while “9” is only

worth 9

329
102 101 100

101
22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most
significant

least
significant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall Semester 2014

Unsigned Integers (cont.)
! An n-bit unsigned integer represents 2n values:

from 0 to 2n-1.

22 21 20

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall Semester 2014

Unsigned Binary Arithmetic

! Base-2 addition – just like base-10!
n  add from right to left, propagating carry

 10010 10010 1111
 + 1001 + 1011 + 1

 11011 11101 10000

 10111
 + 111

carry

Subtraction, multiplication, division: remember integer math!

carry

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall Semester 2014

Signed Integers
! With n bits, we have 2n distinct values.

n  assign about half to positive integers (1 through 2n-1)
n  assign about half to negative (- 2n-1 through -1)
n  that leaves two values: one for 0, and one extra

! Positive integers
n  just like unsigned – zero in most significant (MS) bit

00101 = 5
! Negative integers

n  sign-magnitude – set sign bit to show negative
10101 = -5

n  One’s complement – flip every bit to represent negative
11010 = -5

n  in either case, MS bit indicates sign: 0=pos., 1=neg.

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall Semester 2014

Two’s Complement
! Problems with sign-magnitude, 1’s complement

n  two representations of zero (+0 and –0)
n  arithmetic circuits are complex

! How to add two sign-magnitude numbers?
n  e.g., try 2 + (-3)

! How to add to one’s complement numbers?
n  e.g., try 4 + (-3)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall Semester 2014

Two’s Complement
! Two’s complement representation developed to

make circuits easy for arithmetic.
n  for each positive number (X), assign value to its

negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring
carry out

 00101 (5) 01001 (9)
 + 11011 (-5) + (-9)

 00000 (0) 00000 (0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall Semester 2014

Two’s Complement Representation

! If number is positive or zero,
n  normal binary representation, zeroes in upper bit(s)

! If number is negative,
n  start with positive number
n  flip every bit (i.e., take the one’s complement)
n  then add one

 00101 (5) 01001 (9)
 11010 (1’s comp) (1’s comp)

 + 1 + 1
 11011 (-5) (-9)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall Semester 2014

Two’s Complement Shortcut

! To take the two’s complement of a number:
n  copy bits from right to left until (and including) first “1”
n  flip remaining bits to the left

 011010000 011010000
 100101111 (1’s comp)

 + 1
 100110000 100110000

(copy) (flip)

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall Semester 2014

Two’s Complement Signed Integers
! MS bit is sign bit – it has weight –2n-1.
! Range of an n-bit number: -2n-1 through 2n-1 – 1.

n  The most negative number has no positive counterpart.

-23 22 21 20

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 0 1 5
0 1 1 0 6
0 1 1 1 7

-23 22 21 20

1 0 0 0 -8
1 0 0 1 -7
1 0 1 0 -6
1 0 1 1 -5
1 1 0 0 -4
1 1 0 1 -3
1 1 1 0 -2
1 1 1 1 -1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall Semester 2014

Converting Binary (2’s C) to Decimal

1.  If leading bit is one, take two’s
complement to get a positive number.

2.  Add powers of 2 that have “1” in the
corresponding bit positions.

3.  If original number was negative,
add a minus sign.

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

 X = 01101000two
 = 26+25+23 = 64+32+8
 = 104ten

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall Semester 2014

More Examples

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024
Assuming 8-bit 2’s complement numbers.

 X = 00100111two
 = 25+22+21+20 = 32+4+2+1
 = 39ten

 X = 11100110two
 -X = 00011010

 = 24+23+21 = 16+8+2
 = 26ten

 X = -26ten

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall Semester 2014

Converting Decimal to Binary (2’s C)
! First Method: Division
1.  Find magnitude of decimal number
2.  Divide by two – remainder is least significant

bit.
3.  Keep dividing by two until answer is zero,

writing remainders from right to left.
4.  Append a zero as the MS bit;

for negative, take two’s complement.

 X = 104ten 104 - 64 = 40 bit 6
 40 - 32 = 8 bit 5
 8 - 8 = 0 bit 3

 X = 01101000two

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall Semester 2014

Converting Decimal to Binary (2’s C)
! Second Method: Subtract Powers of Two
1.  Find magnitude of decimal number.
2.  Subtract largest power of two

less than or equal to number.
3.  Put a one in the corresponding bit position.
4.  Keep subtracting until result is zero.
5.  Append a zero as MS bit;

if original was negative, take two’s complement.

 X = 104ten 104 - 64 = 40 bit 6
 40 - 32 = 8 bit 5
 8 - 8 = 0 bit 3

 X = 01101000two

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512

10 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall Semester 2014

Operations: Arithmetic and Logical
! Recall: data types include representation and

operations.
! 2’s complement is a good representation for signed

integers, now we need arithmetic operations:
n  Addition (including overflow)
n  Subtraction
n  Sign Extension

! Multiplication and division can be built from these
basic operations.

! Logical operations are also useful:
n  AND
n  OR
n  NOT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall Semester 2014

Addition
! As we’ve discussed, 2’s comp. addition is just

binary addition.
n  assume all integers have the same number of bits
n  ignore carry out
n  for now, assume that sum fits in n-bit 2’s comp.

representation
 01101000 (104) 11110110 (-10)

 + 11110000 (-16) + (-9)
 01011000 (98) (-19)

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall Semester 2014

Subtraction
! Negate second operand, then add.

n  assume all integers have the same number of bits
n  ignore carry out
n  for now, assume that difference fits in n-bit 2’s comp.

representation

 01101000 (104) 11110110 (-10)
 - 00010000 (16) - (-9)
 01101000 (104) 11110110 (-10)

 + 11110000 (-16) + (9)
 01011000 (88) (-1)

Assuming 8-bit 2’s complement numbers.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall Semester 2014

Sign Extension

! To add two numbers, we must represent them
with the same number of bits.

! If we just pad with zeroes on the left:

! Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall Semester 2014

Overflow
! If operands are too big, then sum cannot be

represented as an n-bit 2’s comp number.

! We have overflow if:
n  signs of both operands are the same, and
n  sign of sum is different.

! Another test -- easy for hardware:
n  carry into MS bit does not equal carry out

 01000 (8) 11000 (-8)
 + 01001 (9) + 10111 (-9)

 10001 (-15) 01111 (+15)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall Semester 2014

Logical Operations
! Operations on logical TRUE or FALSE

n  two states -- takes one bit to represent: TRUE=1,
FALSE=0

! View n-bit number as a collection of n logical values
n  operation applied to each bit independently

A B A AND B

0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B

0 0 0
0 1 1
1 0 1
1 1 1

A NOT A

0 1
1 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall Semester 2014

Examples of Logical Operations

! AND
n  useful for clearing bits

! AND with zero = 0
! AND with one = no change

! OR
n  useful for setting bits

! OR with zero = no change
! OR with one = 1

! NOT
n  unary operation -- one argument
n  flips every bit

 11000101
 AND 00001111

 00000101

 11000101
 OR 00001111

 11001111

 NOT 11000101
 00111010

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall Semester 2014

Hexadecimal Notation
! It is often convenient to write binary (base-2)

numbers in hexadecimal (base-16) instead.
n  fewer digits - four bits per hex digit
n  less error prone - no long string of 1’s and 0’s

Binary Hex Decimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7

Binary Hex Decimal

1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall Semester 2014

Converting from Binary to Hexadecimal

! Every four bits is a hex digit.
n  start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111

7 D 4 F 8 A 3

This is not a new machine representation,
just a convenient way to write the number.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall Semester 2014

Fractions: Fixed-Point
! How can we represent fractions?

n  Use a “binary point” to separate positive from
negative powers of two -- just like “decimal point.”

n  2’s comp addition and subtraction still work (if binary
points are aligned)

 00101000.101 (40.625)
 + 11111110.110 (-1.25)

 00100111.011 (39.375)

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

No new operations -- same as integer arithmetic.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall Semester 2014

Very Large and Very Small: Floating-
Point

! Large values: 6.023 x 1023 -- requires 79 bits
! Small values: 6.626 x 10-34 -- requires >110 bits
! Use equivalent of “scientific notation”: F x 2E

! Must have F (fraction), E (exponent), and sign.
! IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(
126

127exponent

=××−=

≤≤××−=
−

−

S

S

N

N

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Fall Semester 2014

Floating Point Example

! Single-precision IEEE floating point number:
! 1 01111110 10000000000000000000000

n  Sign is 1 – number is negative.
n  Exponent field is 01111110 = 126 (decimal).
n  Fraction is 1.100000000000… = 1.5 (decimal).

! Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75

sign exponent fraction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Fall Semester 2014

Floating-Point Operations
! Will regular 2’s complement arithmetic work for

Floating Point numbers?
! (Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x

108?)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Fall Semester 2014

Text: ASCII Characters
! ASCII: Maps 128 characters to 7-bit code.

n  printable and non-printable (ESC, DEL, …) characters
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p
01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q
02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r
03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s
04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t
05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u
06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v
07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w
08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x
09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y
0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z
0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {
0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |
0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }
0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~
0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS270 - Fall Semester 2014

Text: ASCII Characters
! ASCII is a seven-bit code. “Eight-bit ASCII”

makes as sense as a square circle.
! There is no need to memorize the ASCII chart.
! There is no need to insert ASCII values into a

program.
n  if (c >= 65 && c <= 90) … // just showing off
n  if (c >= 'A' && c <= 'Z') … // easy to understand
n  if ('A' <= c && c <= 'Z') … // I like this even more

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33 CS270 - Fall Semester 2014

Interesting Properties of ASCII Code
! What is relationship between a decimal digit ('0',

'1', …) and its ASCII code?
! What is the difference between an upper-case

letter ('A', 'B', …) and its lower-case equivalent ('a',
'b', …)?

! Given two ASCII characters, how do we tell which
comes first in alphabetical order?

! Are 128 characters enough?
(http://www.unicode.org/)

No new operations needed for ASCII codes –
integer arithmetic and logic are sufficient.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34 CS270 - Fall Semester 2014

Other Data Types
! Text strings

n  array of characters, terminated with null character ('\0')
n  typically, no hardware support

! Image
n  array of pixels

! monochrome: one bit (0/1 = black/white)
! color: red, green, blue (RGB) components
! other properties: transparency

n  hardware support:
! typically none, in general-purpose processors
! MMX -- multiple 8-bit operations on 32-bit word

! Sound
n  sequence of fixed-point numbers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35 CS270 - Fall Semester 2014

LC-3 Data Types

! Some data types are supported directly by the
instruction set architecture.

! For LC-3, there is only one hardware-supported
data type:
n  16-bit 2’s complement signed integer
n  Operations: ADD, AND, NOT

! Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, floating-
point, etc., in the software that we write.

