Chapter 2
Bits, Data Types,
and Operations

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright & Inc. Permission q o or display.

How do we represent data in a
computer?
@ Atthe lowest level, a computer is an electronic
machine.
= works by controlling the flow of electrons
@ Easy to recognize two conditions:
1. presence of a voltage — we'll call this state “1”
2. absence of a voltage — we'll call this state “0”
@ Could base state on value of voltage,
but control and detection circuits more complex.

= compare turning on a light switch to
measuring or regulating voltage

CS270 - Fall Semester 2014

Copyright & Inc. Permission a o or display.

Computer is a binary digital system.

Digital system:
« finite number of symbols

(base two) system:
« has two states: 0 and 1
Digtal Values » 0" legal o
i | . :
1

I I 1
Analog Values » 0.5 24 2.9 Volts

@ Basic unit of information is the binary digit, or bit.
@ Values with >2 states require multiple bits.
= A collection of two bits has four possible states:
00, 01, 10, 11
= A collection of three bits has eight possible states:
000, 001, 010, 011, 100, 101, 110, 111
= A collection of n bits has 2" possible states.

CS270 - Fall Semester 2014 3

Copyright & Inc. Permission or display.

What kinds of data Ejo ;Ne need to
represent?

=« Numbers — signed, unsigned, integers, floating point,
complex, rational, irrational, ...

s Text — characters, strings, ...

« Logical — true, false

= Images — pixels, colors, shapes, ...

= Sound — wave forms

= Instructions
@ Data type:

» representation and operations within the computer
@ We'll start with numbers...

CS270 - Fall Semester 2014

Copyright & Inc. Permission req. or or display.

Unsigned Integers

@ Non-positional notation
= could represent a number (“5”) with a string of ones
(“111117)
= problems?
@ Weighted positional notation
= like decimal numbers: “329”
= “3”is worth 300, because of its position, while “9” is only

worth 9
most
329 significant 1 0 1 significant
Z 1 N /1N
102 10" 100 22 20 20
[3x100 +2x10 +9x1=329] [1x4 + 0x2+ 1x1 = 5]
CS270 - Fall Semester 2014 5

Inc. Permission reat or or display.

Copyright &

Unsigned Integers (cont.)

@ An n-bit unsigned integer represents 2" values:
from O to 2"-1.

22 21 20
0O 0 O 0
o o0 1 1
0o 1 0 2
0o 1 1 3
1 0 0 4
1 0o 1 5
1 1 0 6
1 1 1 7
5270 - Fall Semester 2014 6

Copyright & Inc. Permission req. z or display.

Unsigned Binary Arithmetic

@ Base-2 addition — just like base-10!
= add from right to left, propagating carry
(\ carry (YYY\ carry

10010 10010 1111
+_ 1001 +_ 1011 + 1
11011 11101 10000
10111
+ 1M

Subtraction, multiplication, division: remember integer math!

CS270 - Fall Semester 2014 7

Copyright & Inc. Permission req. z or display.

Signed Integers

@ With n bits, we have 2" distinct values.
= assign about half to positive integers (1 through 2™)
= assign about half to negative (- 2" through -1)
= that leaves two values: one for 0, and one extra
@ Positive integers
= just like unsigned — zero in most significant (MS) bit
00101 =5
@ Negative integers
= sign-magnitude — set sign bit to show negative
10101 =-5
= One’s complement — flip every bit to represent negative
11010=-5
= in either case, MS bit indicates sign: 0=pos., 1=neg.

CS270 - Fall Semester 2014

e i

in. Permission reat or or display.

Copyright &

Two’s Complement

@ Problems with sign-magnitude, 1’'s complement
= two representations of zero (+0 and —-0)
= arithmetic circuits are complex
oHow to add two sign-magnitude numbers?
= e.g., try2+(-3)
oHow to add to one’s complement numbers?

= e.g., try4 +(-3)

CS270 - Fall Semester 2014

Inc. Permission reat or or display.

Copyright &

Two’s Complement

@ Two’s complement representation developed to
make circuits easy for arithmetic.
= for each positive number (X), assign value to its

negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring

carry out
00101 (5) 01001 (9)
+_11011 (-5) + (-9)
00000 (0) 00000 (0)

CS270 - Fall Semester 2014

Permission reat z or display.

or display.

Copyright & Inc. Permission req.

Two’s Complement Representation

@ If number is positive or zero,
= normal binary representation, zeroes in upper bit(s)

@ If number is negative,
= start with positive number
= flip every bit (i.e., take the one’s complement)

= then add one

00101 (5) e 01001 (9)

11010 (1’s comp) (1’s comp)
+ 1 + 1

11011 (-5) (-9)

CS270 - Fall Semester 2014

Copyright &

Two’s Complement Shortcut

@ To take the two’s complement of a number:
= copy bits from right to left until (and including) first “1”

= flip remaining bits to the left

011010000 011010000
100101111 (1's comp) (flip) @ (copy)

+ 1
100110000 10011/0000

CS270 - Fall Semester 2014

Copyright & Inc. Permission req. or or display.

Two’s Complement Signed Integers
@ MS bit is sign bit — it has weight —277.
@ Range of an n-bit number: -2"* through 21 — 1.
= The most negative number has no positive counterpart.

Copyright Inc. Permission req. or or display.

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s
complement to get a positive number.

s
N
5

01
23 92 21 90 23 22 21 20 2. Add powers of 2 that have “1” in the 1|2
corresponding bit positions. 2%
o 0 0 0 0 1 0 0 of -8 esp HR . als
0 0 0 1 1 1 0 0 1 7 3. If original number was negative, 4(16
0 0 1 0 2 1. 0 1 0 -6 add a minus sign. 5|2
664
0 0 1 1 3 1 11 g
A L e X = 01101000, 7| 128
) = 26+25+23 = 64+32+8 9|2
0 1 0 1 5 11 0 1 -3 - 104 9512
o 1 1 0 6 1 1 1 0 2 - ten 10 | 1024
0 1 1 1 7 1 1 1 1 1 Assuming 8-bit 2’s complement numbers.
CS270 - Fall Semester 2014 13 CS270 - Fall Semester 2014 14
More Examples Converting Decimal to Binary (2's C)
X = 00100111, o First Method: Division
= 25422421420 = 32+4+2+1 nlon 1. Find magnitude of decimal number nj2°
= 3%, K 2. Divide by two — remainder is least significant (1) ;
102 bit. ol
X = 11100110 i ; 3. Keep dividing by two until answer is zero, ale
X = 00011010“”0 2l writing remainders from right to left. e
= 24423421 = 16+8+2 5|32 4. Append a zero as the MS bit; 5|32
6|64 for negative, take two’s complement. 6|64
= 26y 7[128 M
_ 8| 256 X = 104, 104-64 = 40 bit6
X = -26, sli=15 40-32 = 8 bit 5 Y 28
10| 1024 8-8 =10 bit 3 9512
Assuming 8-bit 2’s complement numbers. X= 01101000two 101024
CS270 - Fall Semester 2014 15 CS270 - Fall Semester 2014 16

Copyright & Inc. Permission req. or or display.

Converting Decimal to Binary (2's C)

@ Second Method: Subtract Powers of Two
1. Find magnitude of decimal number.

Copyright Inc. Permission req. or or display.

Operations: Arithmetic and Logical
9 Recall: data types include representation and
operations.

_nj2n @ 2’'s complement is a good representation for signed
2. Subtract largest power of two 0[1 integers, now we need arithmetic operations:
less than or equal to number. 1]2 e (T :
3. Put a one in the corresponding bit position 2|4 = Addition (nchudRsiE il
; _ >sponding bit p ' 3ls » Subtraction
4. Keep subtracting until result is zero. 4|16 « Sign Extension
£ {;‘gf.zn:; Zaegonzsggf.sebi:;ke o 2 gj o Multiplication and division can be built from these
I 1g1 W ve, W g A A
o baS|.c operatlohs.
X = 104, 104-64 = 40 bit6 8| 256 o Logical operations are also useful:
40-32 = 8 bit 5 ol 512 . AND
8-8 =10 bit 3 g ey s
X = 01101000, B
CS270 - Fall Semester 2014 17 C NOT CS270 - Fall Semester 2014 18
Addition Subtraction

@ As we've discussed, 2’s comp. addition is just
binary addition.
= assume all integers have the same number of bits
= ignore carry out
= for now, assume that sum fits in n-bit 2’s comp.

representation
01101000 (104) 11110110 (-10)
+_ 11110000 (-16) + -9)
01011000 (98) (-19)

Assuming 8-bit 2's complement numbers.

CS270 - Fall Semester 2014 19

@ Negate second operand, then add.
= assume all integers have the same number of bits
= ignore carry out
= for now, assume that difference fits in n-bit 2’s comp.

representation
01101000 (104) 11110110 (-10)
- 00010000 (16) - -9)
01101000 (104) 11110110 (-10)
+_ 11110000 (-16) +)
01011000 (88) (-1)

Assuming 8-bit 2's complement numbers.

CS270 - Fall Semester 2014 20

nnnnnnnn o Inc. Permission req. or or display.

Sign Extension

@ To add two numbers, we must represent them
with the same number of bits.
@ If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

9 Instead, replicate the MS bit -- the sign bit:
4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)

CS270 - Fall Semester 2014 21

Overflow

.........

9 If operands are too big, then sum cannot be
represented as an n-bit 2’s comp number.

01000 (8) 11000 (-8)
+ 01001 (9) + 10111 (-9)
10001 (-15) 01111 (+15)

@ We have overflow if:

= signs of both operands are the same, and

= sign of sum is different.
@ Another test -- easy for hardware:

= carry into MS bit does not equal carry out

CS270 - Fall Semester 2014

22

nnnnnnnn © Inc. Permission req. z or display.

Logical Operations

@ Operations on logical TRUE or FALSE
= two states -- takes one bit to represent: TRUE=1,

FALSE=0
A B|AANDB A B|AORB A|NOTA
00 0 00 O 0| 1
01 o 01 1 11 o
10 0 10 1
11 1 11 1

@ View n-bit number as a collection of n logical values
= operation applied to each bit independently

CS270 - Fall Semester 2014 23

nnnnnnnn) Inc. Permission req.

aaaaaaaaa

Examples of Logical Operations

@ AND AND
= useful for clearing bits
@AND with zero =0
@AND with one = no change
o OR
= useful for setting bits
@OR with zero = no change
QOR with one = 1
o NOT NOT
= unary operation -- one argument
= flips every bit

OR

CS270 - Fall Semester 2014

11000101

00001111

00000101

11000101

00001111

11001111

11000101

00111010

24

Copyright & Inc. Permission req. or or display.

Hexadecimal Notation

©

It is often convenient to write binary (base-2)
numbers in hexadecimal (base-16) instead.
= fewer digits - four bits per hex digit

= less error prone - no long string of 1’s and 0’s

Binary Hex Decimal Binary Hex Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 1
0100 4 4 1100 (0] 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 111 F 15

CS270 - Fall Semester 2014 25

Copyright Inc. Permission req. or or display.

Converting from Binary to Hexadecimal

@ Every four bits is a hex digit.
= start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111

/A S T A

3 A 8 F 4 D 7

This is not a new machine representation,
Just a convenient way to write the number.

CS270 - Fall Semester 2014 26

Copyright & Inc. Permission req. z or display.

Fractions: Fixed-Point

@ How can we represent fractions?
= Use a “binary point” to separate positive from
negative powers of two -- just like “decimal point.”
= 2’s comp addition and subtraction still work (if binary

points are aligned) 21205

22=0.25
[2%=0125
00101000.101 (40.625)
+_ 11111110.110 (-1.25)

00100111.011 (39.375)

No new operations -- same as integer arithmetic. ‘

CS270 - Fall Semester 2014 27

Copyright & Inc. Permission or display.

Very Large and Very Small: Floating-
Point

o Large values: 6.023 x 1023 -- requires 79 bits
@ Small values: 6.626 x 1034 -- requires >110 bits
@ Use equivalent of “scientific notation”: F x 2E
@ Must have F (fraction), E (exponent), and sign.
o IEEE 754 Floating-Point Standard (32-bits):

28 8b 23b

‘ S ‘Exponent‘ Fraction ‘

N = (=1)S x1.fraction x 28%°°"e"-127 1 < exponent < 254

N = (—1)s x 0 fraction x27'%®, exponent = 0

CS270 - Fall Semester 2014 28

Copyright & Inc. Permission req. or or display.

Floating Point Example

@ Single-precision IEEE floating point number:
o 101111110 10000000000000000000000
t t 1

= Sign is 1 — number is negative.
= Exponent field is 01111110 = 126 (decimal).
= Fraction is 1,100000000000... = 1.5 (decimal).

o Value = -1.5 x 2(126-127) = -1 5 x 21 = .0.75

CS270 - Fall Semester 2014 29

Copyright Inc. Permission req. or or display.

Floating-Point Operations

@ Will regular 2’s complement arithmetic work for
Floating Point numbers?

@ (Hint: In decimal, how do we compute 3.07 x 10"2 + 9.11 x
1087)

CS270 - Fall Semester 2014 30

Copyright & Inc. Permission req. z or display.

Text: ASCII Characters

@ ASCII: Maps 128 characters to 7-bit code.
= printable and non-printable (ESC, DEL, ...) characters

00 nul{10 dle[20 sp|30 O (40 @ |50 P |60 70 p
01 soh| 11 dc1f21 ! |31 1|41 A |51 Q|61 a |71 ¢q
02 stx|12 dc2{22 " [32 2 (42 B (52 R|[62 b |72 r
03 etx|13 dc3[23 # |33 3 (43 C |53 S |63 c |73 s
04 eot|14 dc4(24 $ |34 4|44 D |54 T |64 d |74 t
05 eng| 15 nak|25 % [35 5 (45 E (55 U |65 e |75 u
06 ack|16 syn|26 & (36 6 (46 F [56 V |66 f |76 v
07 bel|17 etb|27 ' [37 7 |47 G |57 W |67 g |77 w
08 bs|18 can[28 ([38 8 (48 H |58 X [68 h |78 x
09 ht|{19 em{29) |39 9|49 | |59 Y [69 i |79 vy
Oa nl|1a subj2a * |3a : |4a J |ba Z |6a | |7a z
Ob vt|1b esc|2b + [3b ; [4b K |[5b [[6b k [7b {
Oc np|1c fs|2c , [3c < |[4c L |[5c \ [6c | |7c |
0d cr|{1d gs{2d - [3d =[4d M|5d] [6d m|7d }
Oe so|1e rs(2 . |3e >|4e N|5e " |6e n (7e ~
of si|1f us|[2f / [3f ?|4f O|5f _ [6f o |7f del

CS270 - Fall Semester 2014 31

Copyright & Inc. Permission req. z or display.

Text: ASCII Characters

@ ASClII is a seven-bit code. “Eight-bit ASCII”
makes as sense as a square circle.
@ There is no need to memorize the ASCII chart.
@ There is no need to insert ASCII values into a
program.
« if (c>=658&&c<=90)... //justshowing off
« if (c>="A"&& c<="Z")... [l easy to understand
= if(A'<=c&&c<="Z")... [lllike this even more

CS270 - Fall Semester 2014 32

Copyright & Inc. Permission req. or display.

Interesting Properties of ASCIl Code

@ What is relationship between a decimal digit ('0',
1", ...) and its ASCII code?

@ What is the difference between an upper-case
letter ('A’, 'B', ...) and its lower-case equivalent ('a’,
b’ ...)?

@ Given two ASCII characters, how do we tell which
comes first in alphabetical order?

@ Are 128 characters enough?
(http://lwww.unicode.org/)

No new operations needed for ASCII codes -
integer arithmetic and logic are sufficient.
CS270 - Fall Semester 2014 33

Copyright & Inc. Permission or or display.

Other Data Types
@ Text strings
= array of characters, terminated with null character ('\0'")
= typically, no hardware support
@ Image
= array of pixels
@ monochrome: one bit (0/1 = black/white)
@ color: red, green, blue (RGB) components
@ other properties: transparency
= hardware support:
9 typically none, in general-purpose processors
@ MMX -- multiple 8-bit operations on 32-bit word
@ Sound
= sequence of fixed-point numbers

CS270 - Fall Semester 2014

34

Copyright & Inc. Permission z or display.

LC-3 Data Types

@ Some data types are supported directly by the
instruction set architecture.

@ For LC-3, there is only one hardware-supported
data type:
= 16-bit 2’'s complement signed integer
= Operations: ADD, AND, NOT

o Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, floating-
point, etc., in the software that we write.

CS270 - Fall Semester 2014 35

