Chapter 2
Bits, Data Types,
and Operations

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University
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How do we represent data in a
computer?
@ Atthe lowest level, a computer is an electronic
machine.
= works by controlling the flow of electrons
@ Easy to recognize two conditions:
1. presence of a voltage — we'll call this state “1”
2. absence of a voltage — we'll call this state “0”
@ Could base state on value of voltage,
but control and detection circuits more complex.

= compare turning on a light switch to
measuring or regulating voltage
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Computer is a binary digital system.

Digital system:
« finite number of symbols

(base two) system:
« has two states: 0 and 1
Digtal Values » 0" legal o
i | . :
1

I I 1
Analog Values » 0.5 24 2.9 Volts

@ Basic unit of information is the binary digit, or bit.
@ Values with >2 states require multiple bits.
= A collection of two bits has four possible states:
00, 01, 10, 11
= A collection of three bits has eight possible states:
000, 001, 010, 011, 100, 101, 110, 111
= A collection of n bits has 2" possible states.
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What kinds of data Ejo ;Ne need to
represent?

=« Numbers — signed, unsigned, integers, floating point,
complex, rational, irrational, ...

s Text — characters, strings, ...

« Logical — true, false

= Images — pixels, colors, shapes, ...

= Sound — wave forms

= Instructions
@ Data type:

» representation and operations within the computer
@ We'll start with numbers...
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Unsigned Integers

@ Non-positional notation
= could represent a number (“5”) with a string of ones
(“111117)
= problems?
@ Weighted positional notation
= like decimal numbers: “329”
= “3”is worth 300, because of its position, while “9” is only

worth 9
most
329 significant 1 0 1 significant
Z 1 N /1N
102 10" 100 22 20 20
[3x100 +2x10 +9x1=329]  [1x4 + 0x2+ 1x1 = 5]
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Unsigned Integers (cont.)

@ An n-bit unsigned integer represents 2" values:
from O to 2"-1.

22 21 20
0O 0 O 0
o o0 1 1
0o 1 0 2
0o 1 1 3
1 0 0 4
1 0o 1 5
1 1 0 6
1 1 1 7
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Unsigned Binary Arithmetic

@ Base-2 addition — just like base-10!
= add from right to left, propagating carry
(\ carry (YYY\ carry

10010 10010 1111
+_ 1001 +_ 1011 + 1
11011 11101 10000
10111
+ 1M

Subtraction, multiplication, division: remember integer math!
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Signed Integers

@ With n bits, we have 2" distinct values.
= assign about half to positive integers (1 through 2™)
= assign about half to negative (- 2" through -1)
= that leaves two values: one for 0, and one extra
@ Positive integers
= just like unsigned — zero in most significant (MS) bit
00101 =5
@ Negative integers
= sign-magnitude — set sign bit to show negative
10101 =-5
= One’s complement — flip every bit to represent negative
11010=-5
= in either case, MS bit indicates sign: 0=pos., 1=neg.
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Two’s Complement

@ Problems with sign-magnitude, 1’'s complement
= two representations of zero (+0 and —-0)
= arithmetic circuits are complex
oHow to add two sign-magnitude numbers?
= e.g., try2+(-3)
oHow to add to one’s complement numbers?

= e.g., try4 +(-3)
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Two’s Complement

@ Two’s complement representation developed to
make circuits easy for arithmetic.
= for each positive number (X), assign value to its

negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring

carry out
00101 (5) 01001 (9)
+_11011 (-5) + (-9)
00000 (0) 00000 (0)
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Two’s Complement Representation

@ If number is positive or zero,
= normal binary representation, zeroes in upper bit(s)

@ If number is negative,
= start with positive number
= flip every bit (i.e., take the one’s complement)

= then add one

00101 (5) e 01001 (9)

11010 (1’s comp) (1’s comp)
+ 1 + 1

11011 (-5) (-9)
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Two’s Complement Shortcut

@ To take the two’s complement of a number:
= copy bits from right to left until (and including) first “1”

= flip remaining bits to the left

011010000 011010000
100101111 (1's comp) (flip) @ (copy)

+ 1
100110000 10011/0000
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Two’s Complement Signed Integers
@ MS bit is sign bit — it has weight —277.
@ Range of an n-bit number: -2"* through 21 — 1.
= The most negative number has no positive counterpart.
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Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s
complement to get a positive number.

s
N
5

01
23 92 21 90 23 22 21 20 2. Add powers of 2 that have “1” in the 1|2
corresponding bit positions. 2%
o 0 0 0 0 1 0 0 of -8 esp HR . als
0 0 0 1 1 1 0 0 1 7 3. If original number was negative, 4(16
0 0 1 0 2 1. 0 1 0 -6 add a minus sign. 5|2
664
0 0 1 1 3 1 11 g
A L e X = 01101000, 7| 128
) = 26+25+23 = 64+32+8 9|2
0 1 0 1 5 11 0 1 -3 - 104 9512
o 1 1 0 6 1 1 1 0 2 - ten 10 | 1024
0 1 1 1 7 1 1 1 1 1 Assuming 8-bit 2’s complement numbers.
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More Examples Converting Decimal to Binary (2's C)
X = 00100111, o First Method: Division
= 25422421420 = 32+4+2+1 nlon 1. Find magnitude of decimal number nj2°
= 3%, K 2. Divide by two — remainder is least significant (1) ;
102 bit. ol
X = 11100110 i ; 3. Keep dividing by two until answer is zero, ale
X = 00011010“”0 2l writing remainders from right to left. e
= 24423421 = 16+8+2 5|32 4. Append a zero as the MS bit; 5|32
6|64 for negative, take two’s complement. 6|64
= 26y 7[128 M
_ 8| 256 X = 104, 104-64 = 40  bit6
X = -26, sli=15 40-32 = 8 bit 5 Y 28
10| 1024 8-8 =10 bit 3 9512
Assuming 8-bit 2’s complement numbers. X= 01101000two 101024
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Converting Decimal to Binary (2's C)

@ Second Method: Subtract Powers of Two
1. Find magnitude of decimal number.
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Operations: Arithmetic and Logical
9 Recall: data types include representation and
operations.

_nj2n @ 2’'s complement is a good representation for signed
2. Subtract largest power of two 0[1 integers, now we need arithmetic operations:
less than or equal to number. 1]2 e (T :
3. Put a one in the corresponding bit position 2|4 = Addition (nchudRsiE il
; _ >sponding bit p ' 3ls » Subtraction
4. Keep subtracting until result is zero. 4|16 « Sign Extension
£ {;‘gf.zn:; Zaegonzsggf.sebi:;ke o 2 gj o Multiplication and division can be built from these
I 1g1 W ve, W g A A
o baS|.c operatlohs.
X = 104, 104-64 = 40 bit6 8| 256 o Logical operations are also useful:
40-32 = 8 bit 5 ol 512 . AND
8-8 =10 bit 3 g ey s
X = 01101000, B
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Addition Subtraction

@ As we've discussed, 2’s comp. addition is just
binary addition.
= assume all integers have the same number of bits
= ignore carry out
= for now, assume that sum fits in n-bit 2’s comp.

representation
01101000 (104) 11110110 (-10)
+_ 11110000 (-16) + -9)
01011000 (98) (-19)

Assuming 8-bit 2's complement numbers.
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@ Negate second operand, then add.
= assume all integers have the same number of bits
= ignore carry out
= for now, assume that difference fits in n-bit 2’s comp.

representation
01101000 (104) 11110110 (-10)
- 00010000 (16) - -9)
01101000 (104) 11110110 (-10)
+_ 11110000 (-16) + )
01011000 (88) (-1)

Assuming 8-bit 2's complement numbers.
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Sign Extension

@ To add two numbers, we must represent them
with the same number of bits.
@ If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

9 Instead, replicate the MS bit -- the sign bit:
4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100  (still -4)
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Overflow

.........

9 If operands are too big, then sum cannot be
represented as an n-bit 2’s comp number.

01000 (8) 11000 (-8)
+ 01001 (9) + 10111 (-9)
10001 (-15) 01111 (+15)

@ We have overflow if:

= signs of both operands are the same, and

= sign of sum is different.
@ Another test -- easy for hardware:

= carry into MS bit does not equal carry out
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Logical Operations

@ Operations on logical TRUE or FALSE
= two states -- takes one bit to represent: TRUE=1,

FALSE=0
A B|AANDB A B|AORB A|NOTA
00 0 00 O 0| 1
01 o 01 1 11 o
10 0 10 1
11 1 11 1

@ View n-bit number as a collection of n logical values
= operation applied to each bit independently
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Examples of Logical Operations

@ AND AND
= useful for clearing bits
@AND with zero =0
@AND with one = no change
o OR
= useful for setting bits
@OR with zero = no change
QOR with one = 1
o NOT NOT
= unary operation -- one argument
= flips every bit

OR
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11000101

00001111

00000101

11000101

00001111

11001111

11000101

00111010
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Hexadecimal Notation

©

It is often convenient to write binary (base-2)
numbers in hexadecimal (base-16) instead.
= fewer digits - four bits per hex digit

= less error prone - no long string of 1’s and 0’s

Binary Hex Decimal Binary Hex Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 1
0100 4 4 1100 (0] 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 111 F 15
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Converting from Binary to Hexadecimal

@ Every four bits is a hex digit.
= start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111

/A S T A

3 A 8 F 4 D 7

This is not a new machine representation,
Just a convenient way to write the number.
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Fractions: Fixed-Point

@ How can we represent fractions?
= Use a “binary point” to separate positive from
negative powers of two -- just like “decimal point.”
= 2’s comp addition and subtraction still work (if binary

points are aligned) 21205

22=0.25
[ 2%=0125
00101000.101 (40.625)
+_ 11111110.110 (-1.25)

00100111.011 (39.375)

No new operations -- same as integer arithmetic. ‘
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Very Large and Very Small: Floating-
Point

o Large values: 6.023 x 1023 -- requires 79 bits
@ Small values: 6.626 x 1034 -- requires >110 bits
@ Use equivalent of “scientific notation”: F x 2E
@ Must have F (fraction), E (exponent), and sign.
o IEEE 754 Floating-Point Standard (32-bits):

28 8b 23b

‘ S ‘Exponent‘ Fraction ‘

N = (=1)S x1.fraction x 28%°°"e"-127 1 < exponent < 254

N = (—1)s x 0 fraction x27'%®, exponent = 0
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Floating Point Example

@ Single-precision IEEE floating point number:
o 101111110 10000000000000000000000
t t 1

= Sign is 1 — number is negative.
= Exponent field is 01111110 = 126 (decimal).
= Fraction is 1,100000000000... = 1.5 (decimal).

o Value = -1.5 x 2(126-127) = -1 5 x 21 = .0.75
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Floating-Point Operations

@ Will regular 2’s complement arithmetic work for
Floating Point numbers?

@ (Hint: In decimal, how do we compute 3.07 x 10"2 + 9.11 x
1087)
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Text: ASCII Characters

@ ASCII: Maps 128 characters to 7-bit code.
= printable and non-printable (ESC, DEL, ...) characters

00 nul{10 dle[20 sp|30 O (40 @ |50 P |60 70 p
01 soh| 11 dc1f21 ! |31 1|41 A |51 Q|61 a |71 ¢q
02 stx|12 dc2{22 " [32 2 (42 B (52 R|[62 b |72 r
03 etx|13 dc3[23 # |33 3 (43 C |53 S |63 c |73 s
04 eot|14 dc4(24 $ |34 4|44 D |54 T |64 d |74 t
05 eng| 15 nak|25 % [35 5 (45 E (55 U |65 e |75 u
06 ack|16 syn|26 & (36 6 (46 F [56 V |66 f |76 v
07 bel|17 etb|27 ' [37 7 |47 G |57 W |67 g |77 w
08 bs|18 can[28 ( [38 8 (48 H |58 X [68 h |78 x
09 ht|{19 em{29 ) |39 9|49 | |59 Y [69 i |79 vy
Oa nl|1a subj2a * |3a : |4a J |ba Z |6a | |7a z
Ob vt|1b esc|2b + [3b ; [4b K |[5b [ [6b k [7b {
Oc np|1c fs|2c , [3c < |[4c L |[5c \ [6c | |7c |
0d cr|{1d gs{2d - [3d =[4d M|5d ] [6d m|7d }
Oe so|1e rs(2 . |3e >|4e N|5e " |6e n (7e ~
of si|1f us|[2f / [3f ?|4f O|5f _ [6f o |7f del
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Text: ASCII Characters

@ ASClII is a seven-bit code. “Eight-bit ASCII”
makes as sense as a square circle.
@ There is no need to memorize the ASCII chart.
@ There is no need to insert ASCII values into a
program.
« if (c>=658&&c<=90)... //justshowing off
« if (c>="A"&& c<="Z")... [l easy to understand
= if(A'<=c&&c<="Z")... [lllike this even more
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Interesting Properties of ASCIl Code

@ What is relationship between a decimal digit ('0',
1", ...) and its ASCII code?

@ What is the difference between an upper-case
letter ('A’, 'B', ...) and its lower-case equivalent ('a’,
b’ ...)?

@ Given two ASCII characters, how do we tell which
comes first in alphabetical order?

@ Are 128 characters enough?
(http://lwww.unicode.org/)

No new operations needed for ASCII codes -
integer arithmetic and logic are sufficient.
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Other Data Types
@ Text strings
= array of characters, terminated with null character ('\0'")
= typically, no hardware support
@ Image
= array of pixels
@ monochrome: one bit (0/1 = black/white)
@ color: red, green, blue (RGB) components
@ other properties: transparency
= hardware support:
9 typically none, in general-purpose processors
@ MMX -- multiple 8-bit operations on 32-bit word
@ Sound
= sequence of fixed-point numbers
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LC-3 Data Types

@ Some data types are supported directly by the
instruction set architecture.

@ For LC-3, there is only one hardware-supported
data type:
= 16-bit 2’'s complement signed integer
= Operations: ADD, AND, NOT

o Other data types are supported by interpreting
16-bit values as logical, text, fixed-point, floating-
point, etc., in the software that we write.
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