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Chapter 2 
Bits, Data Types, 
and Operations 

Original slides from Gregory Byrd, North 
Carolina State University 

Modified slides by Chris Wilcox,             
Colorado State University 
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How do we represent data in a 
computer? 

! At the lowest level, a computer is an electronic 
machine. 

n  works by controlling the flow of electrons 
! Easy to recognize two conditions: 

1.  presence of a voltage – we’ll call this state “1” 
2.  absence of a voltage – we’ll call this state “0” 

! Could base state on value of voltage,  
but control and detection circuits more complex. 

n  compare turning on a light switch to 
measuring or regulating voltage 
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Computer is a binary digital system. 

! Basic unit of information is the binary digit, or bit. 
! Values with >2 states require multiple bits. 

n  A collection of two bits has four possible states: 
00, 01, 10, 11 

n  A collection of three bits has eight possible states: 
000, 001, 010, 011, 100, 101, 110, 111 

n  A collection of n bits has 2n possible states. 

Binary (base two) system: 
•  has two states: 0 and 1 

 

Digital system: 
•  finite number of symbols 
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What kinds of data do we need to 
represent? 

n  Numbers – signed, unsigned, integers, floating point, 
complex, rational, irrational, … 

n  Text – characters, strings, … 
n  Logical – true, false 
n  Images – pixels, colors, shapes, … 
n  Sound – wave forms 
n  Instructions 
n  … 

! Data type:  
n  representation and operations within the computer 

! We’ll start with numbers… 
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Unsigned Integers 

! Non-positional notation 
n  could represent a number (“5”) with a string of ones 

(“11111”) 
n  problems? 

! Weighted positional notation 
n  like decimal numbers: “329” 
n  “3” is worth 300, because of its position, while “9” is only 

worth 9 

329 
102 101 100 

101 
22 21 20 

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5 

most 
significant 

least 
significant 
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Unsigned Integers (cont.) 
! An n-bit unsigned integer represents 2n values: 

from 0 to 2n-1. 

22 21 20 

0 0 0 0 
0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 4 
1 0 1 5 
1 1 0 6 
1 1 1 7 
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Unsigned Binary Arithmetic 

! Base-2 addition – just like base-10! 
n  add from right to left, propagating carry 

  10010   10010   1111 
 +     1001  +  1011  +  1 

  11011   11101   10000 
 

    10111 
   +  111 

carry 

Subtraction, multiplication, division: remember integer math! 

carry 
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Signed Integers 
! With n bits, we have 2n distinct values. 

n  assign about half to positive integers (1 through 2n-1) 
n  assign about half to negative (- 2n-1 through -1) 
n  that leaves two values: one for 0, and one extra 

! Positive integers 
n  just like unsigned – zero in most significant (MS) bit 

00101 = 5 
! Negative integers 

n  sign-magnitude – set sign bit to show negative 
10101 = -5 

n  One’s complement – flip every bit to represent negative 
11010 = -5 

n  in either case, MS bit indicates sign: 0=pos., 1=neg. 
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Two’s Complement 
! Problems with sign-magnitude, 1’s complement 

n  two representations of zero (+0 and –0) 
n  arithmetic circuits are complex 

! How to add two sign-magnitude numbers? 
n  e.g., try 2 + (-3) 

! How to add to one’s complement numbers?  
n  e.g., try 4 + (-3) 
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Two’s Complement 
! Two’s complement representation developed to 

make circuits easy for arithmetic. 
n  for each positive number (X), assign value to its 

negative (-X), 
such that X + (-X) = 0 with “normal” addition, ignoring 
carry out 

  00101  (5)   01001  (9) 
 +  11011  (-5)  +   (-9) 

  00000  (0)   00000  (0) 
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Two’s Complement Representation 

! If number is positive or zero, 
n  normal binary representation, zeroes in upper bit(s) 

! If number is negative, 
n  start with positive number 
n  flip every bit (i.e., take the one’s complement) 
n  then add one 

  00101  (5)   01001  (9) 
  11010  (1’s comp)    (1’s comp) 

 +  1   +  1   
  11011  (-5)    (-9) 
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Two’s Complement Shortcut 

! To take the two’s complement of a number: 
n  copy bits from right to left until (and including) first “1” 
n  flip remaining bits to the left 

  011010000    011010000 
  100101111  (1’s comp)   

 +  1     
  100110000    100110000 

(copy) (flip) 
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Two’s Complement Signed Integers 
! MS bit is sign bit – it has weight –2n-1. 
! Range of an n-bit number: -2n-1 through 2n-1 – 1. 

n  The most negative number has no positive counterpart. 

-23 22 21 20 

0 0 0 0 0 
0 0 0 1 1 
0 0 1 0 2 
0 0 1 1 3 
0 1 0 0 4 
0 1 0 1 5 
0 1 1 0 6 
0 1 1 1 7 

-23 22 21 20 

1 0 0 0 -8 
1 0 0 1 -7 
1 0 1 0 -6 
1 0 1 1 -5 
1 1 0 0 -4 
1 1 0 1 -3 
1 1 1 0 -2 
1 1 1 1 -1 
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Converting Binary (2’s C) to Decimal 

1.  If leading bit is one, take two’s 
complement to get a positive number. 

2.  Add powers of 2 that have “1” in the 
corresponding bit positions. 

3.  If original number was negative, 
add a minus sign. 

n 2n 

0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

10 1024 

 X  =  01101000two 
  = 26+25+23 = 64+32+8 
  = 104ten 

Assuming 8-bit 2’s complement numbers. 
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More Examples 

n 2n 

0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

10 1024 
Assuming 8-bit 2’s complement numbers. 

 X  =  00100111two 
  = 25+22+21+20 = 32+4+2+1 
  = 39ten 

 X  =  11100110two  
 -X = 00011010 

  = 24+23+21 = 16+8+2 
  = 26ten 

 X = -26ten 
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Converting Decimal to Binary (2’s C) 
! First Method: Division 
1.  Find magnitude of decimal number 
2.  Divide by two – remainder is least significant 

bit. 
3.  Keep dividing by two until answer is zero, 

writing remainders from right to left. 
4.  Append a zero as the MS bit; 

for negative, take two’s complement. 

 X  =  104ten  104 - 64  =  40  bit 6 
    40 - 32  =  8  bit 5 
    8 - 8  =  0  bit 3 

 X = 01101000two   

n 2n 

0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

10 1024 
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Converting Decimal to Binary (2’s C) 
! Second Method: Subtract Powers of Two 
1.  Find magnitude of decimal number. 
2.  Subtract largest power of two  

less than or equal to number. 
3.  Put a one in the corresponding bit position. 
4.  Keep subtracting until result is zero. 
5.  Append a zero as MS bit; 

if original was negative, take two’s complement. 

 X  =  104ten  104 - 64  =  40  bit 6 
    40 - 32  =  8  bit 5 
    8 - 8  =  0  bit 3 

 X = 01101000two   

n 2n 

0 1 
1 2 
2 4 
3 8 
4 16 
5 32 
6 64 
7 128 
8 256 
9 512 

10 1024 
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Operations: Arithmetic and Logical 
! Recall:  data types include representation and 

operations. 
! 2’s complement is a good representation for signed 

integers, now we need arithmetic operations: 
n  Addition (including overflow) 
n  Subtraction 
n  Sign Extension 

! Multiplication and  division can be built from these  
basic operations. 

! Logical operations are also useful: 
n  AND 
n  OR 
n  NOT 
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Addition 
! As we’ve discussed, 2’s comp. addition is just  

binary addition. 
n  assume all integers have the same number of bits 
n  ignore carry out 
n  for now, assume that sum fits in n-bit 2’s comp. 

representation 
  01101000  (104)   11110110 (-10) 

 +  11110000  (-16)  +   (-9) 
  01011000  (98)    (-19) 

Assuming 8-bit 2’s complement numbers. 
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Subtraction 
! Negate second operand, then add. 

n  assume all integers have the same number of bits 
n  ignore carry out 
n  for now, assume that difference fits in n-bit 2’s comp. 

representation 

  01101000  (104)   11110110 (-10) 
 -  00010000  (16)  -   (-9) 
  01101000  (104)   11110110 (-10) 

 +  11110000  (-16)  +   (9) 
  01011000  (88)    (-1) 

Assuming 8-bit 2’s complement numbers. 
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Sign Extension 

! To add two numbers, we must represent them 
with the same number of bits. 

! If we just pad with zeroes on the left: 

 

! Instead, replicate the MS bit -- the sign bit: 

4-bit   8-bit 
0100  (4)  00000100  (still 4) 
1100  (-4)  00001100  (12, not -4) 

4-bit   8-bit 
0100  (4)  00000100  (still 4) 
1100  (-4)  11111100  (still -4) 
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Overflow 
! If operands are too big, then sum cannot be 

represented as an n-bit 2’s comp number. 

! We have overflow if: 
n  signs of both operands are the same, and 
n  sign of sum is different. 

! Another test -- easy for hardware: 
n  carry into MS bit does not equal carry out 

  01000  (8)   11000  (-8) 
 +  01001  (9)  +  10111  (-9) 

  10001  (-15)   01111  (+15) 
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Logical Operations 
! Operations on logical TRUE or FALSE 

n  two states -- takes one bit to represent: TRUE=1, 
FALSE=0 

! View n-bit number as a collection of n logical values 
n  operation applied to each bit independently 

A B A AND B 

0 0 0 
0 1 0 
1 0 0 
1 1 1 

A B A OR B 

0 0 0 
0 1 1 
1 0 1 
1 1 1 

A NOT A 

0 1 
1 0 
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Examples of Logical Operations 

! AND 
n  useful for clearing bits 

! AND with zero = 0 
! AND with one = no change 

! OR 
n  useful for setting bits 

! OR with zero = no change 
! OR with one = 1 

! NOT 
n  unary operation -- one argument 
n  flips every bit 

  11000101  
 AND  00001111  

  00000101  

  11000101  
 OR  00001111  

  11001111  

 NOT  11000101  
  00111010  
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Hexadecimal Notation 
! It is often convenient to write binary (base-2) 

numbers in hexadecimal (base-16) instead. 
n  fewer digits - four bits per hex digit 
n  less error prone - no long string of 1’s and 0’s 

Binary Hex Decimal 

0000 0 0 
0001 1 1 
0010 2 2 
0011 3 3 
0100 4 4 
0101 5 5 
0110 6 6 
0111 7 7 

Binary Hex Decimal 

1000 8 8 
1001 9 9 
1010 A 10 
1011 B 11 
1100 C 12 
1101 D 13 
1110 E 14 
1111 F 15 
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Converting from Binary to Hexadecimal 

! Every four bits is a hex digit. 
n  start grouping from right-hand side 

011 1010 1000 1111 0100 1101 0111 

7 D 4 F 8 A 3 

This is not a new machine representation, 
just a convenient way to write the number. 
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Fractions: Fixed-Point 
! How can we represent fractions? 

n  Use a “binary point” to separate positive from 
negative powers of two -- just like “decimal point.” 

n  2’s comp addition and subtraction still work (if binary 
points are aligned) 

  00101000.101 (40.625) 
 +  11111110.110 (-1.25) 

  00100111.011 (39.375) 

2-1 = 0.5 

2-2 = 0.25 

2-3 = 0.125 

No new operations -- same as integer arithmetic. 
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Very Large and Very Small: Floating-
Point 

! Large values: 6.023 x 1023 -- requires 79 bits 
! Small values: 6.626 x 10-34 -- requires >110 bits 
! Use equivalent of “scientific notation”: F x 2E 

! Must have F (fraction), E (exponent), and sign. 
! IEEE 754 Floating-Point Standard (32-bits): 

S Exponent Fraction 

1b 8b 23b 

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(
126

127exponent

=××−=

≤≤××−=
−

−

S

S

N

N
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Floating Point Example 

! Single-precision IEEE floating point number: 
!  1 01111110 10000000000000000000000 

n  Sign is 1 – number is negative. 
n  Exponent field is 01111110 = 126 (decimal). 
n  Fraction is 1.100000000000… = 1.5 (decimal). 

! Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75 

sign exponent fraction 
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Floating-Point Operations 
! Will regular 2’s complement arithmetic work for  

Floating Point numbers? 
! (Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x 

108?) 
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Text: ASCII Characters 
! ASCII: Maps 128 characters to 7-bit code. 

n  printable and non-printable (ESC, DEL, …) characters 
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p 
01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q 
02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r 
03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s 
04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t 
05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u 
06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v 
07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w 
08 bs 18 can 28 ( 38 8 48 H 58 X 68 h 78 x 
09 ht 19 em 29 ) 39 9 49 I 59 Y 69 i 79 y 
0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z 
0b vt 1b esc 2b + 3b ; 4b K 5b [ 6b k 7b { 
0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c | 
0d cr 1d gs 2d - 3d = 4d M 5d ] 6d m 7d } 
0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~ 
0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

32 CS270 - Fall Semester 2014 

Text: ASCII Characters 
! ASCII is a seven-bit code. “Eight-bit ASCII” 

makes as sense as a square circle. 
! There is no need to memorize the ASCII chart. 
! There is no need to insert ASCII values into a 

program. 
n  if (c >= 65 && c <= 90) …  // just showing off 
n  if (c >= 'A' && c <= 'Z') …  // easy to understand 
n  if ('A' <= c && c <= 'Z') …  // I like this even more 
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Interesting Properties of ASCII Code 
! What is relationship between a decimal digit ('0', 

'1', …) and its ASCII code? 
! What is the difference between an upper-case 

letter ('A', 'B', …) and its lower-case equivalent ('a', 
'b', …)? 

! Given two ASCII characters, how do we tell which 
comes first in alphabetical order? 

! Are 128 characters enough? 
(http://www.unicode.org/) 

No new operations needed for ASCII codes –  
integer arithmetic and logic are sufficient. 
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Other Data Types 
! Text strings 

n  array of characters, terminated with null character ('\0') 
n  typically, no hardware support 

! Image 
n  array of pixels 

!  monochrome: one bit (0/1 = black/white) 
!  color: red, green, blue (RGB) components 
!  other properties: transparency 

n  hardware support: 
!  typically none, in general-purpose processors 
!  MMX -- multiple 8-bit operations on 32-bit word 

! Sound 
n  sequence of fixed-point numbers 
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LC-3 Data Types 

! Some data types are supported directly by the 
instruction set architecture. 

! For LC-3, there is only one hardware-supported 
data type: 
n  16-bit 2’s complement signed integer 
n  Operations: ADD, AND, NOT 

! Other data types are supported by interpreting 
16-bit values as logical, text, fixed-point, floating-
point, etc., in the software that we write. 


