
1

Chapter 3

Digital Logic

Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall Semester 2014

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall Semester 2014

State Machine

Another type of sequential circuit

 Combines combinational logic with storage

 “Remembers” state, and changes output (and state)

based on inputs and current state

 State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall Semester 2014

Combinational vs. Sequential

Two types of “combination” locks

4 1 8 4

30

15

5

10 20

25

Combinational

Success depends only on

the values, not the order in

which they are set.

Sequential

Success depends on

the sequence of values

(e.g, R-13, L-22, R-3).

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall Semester 2014

State

The state of a system is a snapshot of all the

relevant elements of the system at the moment

the snapshot is taken.

Examples:

 The state of a basketball game can be represented by

the scoreboard: number of points, time remaining,

possession, etc.

 The state of a tic-tac-toe game can be represented by

the placement of X’s and O’s on the board.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall Semester 2014

State of Sequential Lock

Our lock example has four different states,

labelled A-D:

 A: The lock is not open, and no relevant

operations have been performed.

 B: The lock is not open, and the user has

completed the R-13 operation.

 C: The lock is not open, and the user has

completed R-13, followed by L-22.

 D: The lock is open.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall Semester 2014

State Diagram

Shows states and actions that cause a transition

between states.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall Semester 2014

Finite State Machine
A system with the following components:

1. A finite number of states

2. A finite number of external inputs

3. A finite number of external outputs

4. An explicit specification of all state transitions

5. An explicit specification of what determines each

external output value

Often described by a state diagram.

 Inputs trigger state transitions.

 Outputs are associated with each state (or with each

transition).

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall Semester 2014

The Clock

Frequently, a clock circuit triggers transition from

one state to the next.

At the beginning of each clock cycle,

state machine makes a transition,

based on the current state and the external

inputs.
 Not always required. In lock example, the input itself

triggers a transition.

“1”

“0”

time
One

Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall Semester 2014

Implementing a Finite State Machine

Combinational logic

 Determine outputs and next state.

Storage elements

 Maintain state representation.

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Clock

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall Semester 2014

Storage: Master-Slave Flipflop

A pair of gated D-latches,

to isolate next state from current state.

During 1st phase (clock=1),

previously-computed state

becomes current state and is

sent to the logic circuit.

During 2nd phase (clock=0),

next state, computed by

logic circuit, is stored in

Latch A.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall Semester 2014

Storage

Each master-slave flipflop stores one state bit.

The number of storage elements (flipflops)

needed is determined by the number of states

(and the representation of each state).

Examples:

 Sequential lock

Four states – two bits

 Basketball scoreboard

7 bits for each score, 5 bits for minutes, 6 bits for

seconds,1 bit for possession arrow, 1 bit for half, …

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall Semester 2014

Complete Example

A blinking traffic sign

 No lights on

 1 & 2 on

 1, 2, 3, & 4 on

 1, 2, 3, 4, & 5 on

 (repeat as long as switch

is turned on)

DANGER
MOVE

RIGHT

1

2

3

4

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall Semester 2014

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on

Switch off

Outputs

Transition on each clock cycle.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall Semester 2014

Traffic Sign Truth Tables

Outputs

(depend only on state: S1S0)

S1 S0 Z Y X

0 0 0 0 0

0 1 1 0 0

1 0 1 1 0

1 1 1 1 1

Lights 1 and 2

Lights 3 and 4

Light 5

Next State: S1′ S0′

(depend on state and input)

In S1 S0 S1′ S0′

0 X X 0 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

Switch

Whenever In=0, next state is 00.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall Semester 2014

Traffic Sign Logic

Master-slave
flipflop

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall Semester 2014

From Logic to Data Path

The data path of a computer is all the logic used

to process information.

 See the data path of the LC-3 on next slide.

Combinational Logic

 Decoders -- convert instructions into control signals

 Multiplexers -- select inputs and outputs

 ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic

 State machine -- coordinate control signals and data

movement

 Registers and latches -- storage elements

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall Semester 2014

LC-3 Data Path
Combinational

Logic

State Machine

Storage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall Semester 2014

Looking Ahead: C Arrays

Array name can be used (and passed) as a pointer

 // static allocation for array

 int iArray[2] = {1234, 5678};

 printf("iArray[0]: %d", iArray[0]);

 printf("iArray[1]: %d", iArray[1]);

 printf("&iArray[0]: %p", &iArray[0]);

 printf("&iArray[1]: %p", &iArray[1]);

 printf("iArray: %p", iArray);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall Semester 2014

Looking Ahead: C Pointers

Pointers can be used for array access

 // dynamic allocation for array

 int *iArray = malloc(2*sizeof(int));

 iArray[0] = 1234; iArray[1] = 5678;

 printf("iArray[0]: %d", iArray[0]);

 printf("iArray[1]: %d", iArray[1]);

 printf("&iArray[0]: %p", &iArray[0]);

 printf("&iArray[1]: %p", &iArray[1]);

 printf("iArray: %p", iArray);

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall Semester 2014

Looking Ahead: C Structures

Structures

 struct Student {

 char firstName[80];

 char lastName[80];

 int testScores[2];

 char letterGrade;

 };

 struct Student student;

 struct Student students[10];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall Semester 2014

Looking Ahead: C Structures

Structures

 typedef struct _Student {

 char firstName[80];

 char lastName[80];

 int testScores[2];

 char letterGrade;

 } Student;

 Student student;

 Student students[10];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall Semester 2014

Looking Ahead: C Structures

Structures

 typedef struct {

 char firstName[80];

 char lastName[80];

 int testScores[2];

 char letterGrade;

 } Student;

 Student student;

 Student students[10];

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall Semester 2014

Looking Ahead: C Structures

Accessing structures

 void func(Student student)

 {

 strcpy(student.firstName, "John");

 student.letterGrade = 'A';

 void func(Student *student)

 {

 strcpy(student->firstName, "John");

 student->letterGrade = 'A';

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

File list and compiler flags

 C_SRCS = main.c example.c

 C_OBJS = main.o example.o

 C_HEADERS = example.h

 EXE = example

 CC = c99

 CC_FLAGS = -g –Wall –Wextra –c

 LD_FLAGS = -g –Wall

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

File dependencies

Compile .c source to .o objects

.c.o:

 @echo "Compiling C source files"

 $(CC) $(CC_FLAGS) $<

Make .c files depend on .h files

${C_OBJS}: ${C_HEADERS}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

Build target (default)

Target is the executable

pa3: $(C_OBJS)

 @echo "Linking object modules"

 $(CC) $(LD_FLAGS) $(C_OBJS) –o $(EXE)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall Semester 2014

Looking Ahead: Makefiles

Miscellaneous targets

Clean up the directory

clean:

 @echo "Cleaning up project directory"

 rm –f *.o *~ $(EXE)

Package up the directory

package:

 @echo "Cleaning up project directory"

 tar cvf r4.tar ../R4

