
1

Midterm Exam

Review Slides

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox,

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall Semester 2014

Review Topics

Number Representation

Computer Arithmetic

Transistors and Gates

Combinational Logic

Sequential Circuits

Finite State Machines

C Programming

gdb Debugging

LC-3 Architecture

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall Semester 2014

Number Representation

What can a binary number mean?

Interpretations of a 32-bit memory location:

 32-bit floating point (IEEE)

 32-bit unsigned/signed integer

 16-bit unsigned/signed integer (2)

 8-bit unsigned/signed bytes (4)

 ASCII characters (4)

 RISC instruction

 Control or status register

 .jpg. .mpg, .mp3., .avi, …

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall Semester 2014

Number Representation

Hexadecimal to Binary Conversion

• Method: Convert hexadecimal

digits to binary using table.

• Question: What is hexadecimal

0xFEBD4570 in binary?
F E B D 4 5 7 0

1111 1110 1011 1101 0100 0101 0111 0000

• Answer:

 11111110101111010100010101110000

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall Semester 2014

Number Representation

Binary to Hexadecimal Conversion

• Method: Group binary digits,

convert to hex digits using table.

• Question: What is binary

11001101111011110001001000110000 in

hexadecimal?
1100 1101 1110 1111 0001 0010 0011 0000

C D E F 1 2 3 0

• Answer: 0xCDEF1230

Hexadecimal Binary

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall Semester 2014

Number Representation

Decimal to Binary Conversion

• Method: Convert decimal to binary

with divide by 2, check odd/even.

• Question: What is decimal 49 in

binary?
49 is odd, prepend a ‘1’ 1

49 / 2 = 24 is even, prepend a ‘0’ 01

24 / 2 = 12 is even, prepend a ‘0’ 001

12 / 2 = 6 is even, prepend a ‘0’ 0001

6 / 2 = 3 is odd, prepend a ‘1’ 10001

3 / 2 = 1 is odd, prepend a ‘1’ 110001

Answer: 110001

2n Decimal

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall Semester 2014

Number Representation

Binary to Decimal Conversion

• Method: Convert binary to decimal

by multiplying by 2, add 1 if bit set.

• Question: What is binary 110101 in

binary?
Start with 0 0

Left bit set, multiply by 2, add 1 1

Left bit set, multiply by 2, add 1 3

Left bit clear, multiply by 2 6

Left bit set, multiply by 2, add 1 13

Left bit clear, multiply by 2 26

Left bit set, multiply by 2, add 1 53

Answer: 53

2n Decimal

20 1

21 2

22 4

23 8

24 16

25 32

26 64

27 128

28 256

29 512

210 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall Semester 2014

Number Representation

Binary to Floating Point Conversion

• Single-precision IEEE floating point number:

 1 01111111 10000000000000000000000

 Sign is 1 – number is negative.

 Exponent field is 01111111 = 127 – 127 = 0 (decimal).

 Fraction is 1.100000000000… = 1.5 (decimal).

• Value = -1.5 x 2(127-127) = -1.5 x 20 = -1.5

sign exponent fraction

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall Semester 2014

Number Representation

Floating Point to Binary Conversion

• Value = 6.125

 Number is positive – sign is 0

 Fraction is 110.001 (binary), normalize to 1.10001 * 22

 Exponent is 2 + 127 = 129 (decimal) = 10000001

• Single-precision IEEE floating point number:

 0 10000001 10001000000000000000000

sign exponent fraction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Number Representation

Hexadecimal to ASCII Conversion

Char ASCII

Code

Char ASCII

Code

'A' 0x41 '0' 0x30

'B' 0x42 '1' 0x31

'C' 0x43 '2' 0x32

'D' 0x44 '3' 0x33

'E' 0x45 '4' 0x34

'F' 0x46 '5' 0x35

'G' 0x47 '6' 0x36

• Method: Convert values

to ASCII by table lookup.

• Each two (hex) digits is a

single character.

• Question: What is hex

0x42454144 in binary?
0x42 = 'B'

0x45 = 'E'

0x41 = 'A'

0x44 = 'D'

• Answer: “BEAD”
10 CS270 - Fall Semester 2014

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall Semester 2014

Computer Arithmetic

Signed Integer Representations
Binary

Number

Signed

Magnitude

1’s

Complement

2’s

Complement

0000 0 0 0

0001 1 1 1

0010 2 2 2

0011 3 3 3

0100 4 4 4

0101 5 5 5

0110 6 6 6

0111 7 7 7

1000 -0 -7 -8

1001 -1 -6 -7

1010 -2 -5 -6

1011 -3 -4 -5

1100 -4 -3 -4

1101 -5 -2 -3

1110 -6 -1 -2

1111 -7 -0 -1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Arithmetic

2’s Complement Arithmetic

• Binary Arithmetic

(unsigned integers):

 1 0 0 1 0 0 1 0

+ 0 0 1 1 0 1 0 1

0 1 1 0 0 0 1 1 1

• Hex Equivalent:

0x92 + 0x35 = 0xC7

• Decimal Equivalent:

146 + 53 = 199

• Binary Arithmetic

(signed integers):

 1 0 0 1 0 0 1 0

+ 0 0 1 1 0 1 0 1

0 1 1 0 0 0 1 1 1

• Hex Equivalent:

0x92 + 0x35 = 0xC7

• Decimal Equivalent:

-110 + 53 = -57

12 CS270 - Fall Semester 2014

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall Semester 2014

Computer Arithmetic

Bitwise Logical Operations

• Bitwise AND (&):

 1 1 1 1 0 0 0 0

& 0 0 1 1 0 1 0 1

 0 0 1 1 0 0 0 0

• Hex Equivalent:

0xF0 & 035 = 0xC0

• Bitwise OR (|):

 1 1 1 1 0 0 0 0

| 0 0 1 1 0 1 0 1

 1 1 1 1 0 1 0 1

• Hex Equivalent:

0xF0 | 035 = 0xF5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall Semester 2014

Transistors and Gates

Transistor Basics (p-type and n-type)

Gate voltage determines current flow between

source and drain.

 P-type: 0V closes circuit, 2.9V opens circuit.

 N-type: 2.9V closes circuit, 0V opens circuit.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall Semester 2014

Transistors and Gates

Transistor Basics (p-type and n-type)

Transistors are switches which have a

propagation delay, waveform is not ideal, and

voltage transition is not instantaneous!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall Semester 2014

Transistors and Gates

NOT Gate

A T1 T2 B

0 Closed Open 1

1 Open Closed 0

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall Semester 2014

Transistors and Gates

NOR Gate

A B T1 T2 T3 T4 C

0 0 Closed Closed Open Open 1

0 1 Closed Open Open Closed 0

1 0 Open Closed Closed Open 0

1 1 Open Open Closed Closed 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall Semester 2014

Transistors and Gates

NAND Gate

A B T1 T2 T3 T4 C

0 0 Open Open Closed Closed 1

0 1 Open Closed Closed Open 1

1 0 Closed Open Open Closed 1

1 1 Closed Closed Open Open 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall Semester 2014

Transistors and Gates

De Morgan’s Law
Converting AND to OR (with some help from NOT)

Consider the following gate:

A B

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

BA BA BA 

Same as A OR B!

To convert AND to OR

(or vice versa),

invert inputs and output.

NOT(NOT(A) AND NOT(B)) = A OR B

NOT(NOT(A) OR NOT(B)) = A AND B

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall Semester 2014

Transistors and Gates

Logical Completeness

1. AND/OR/NOT are logically complete, if you have

enough gates you can build any truth table.

2. NAND/NOR are logically complete, same as

above, so only these gates are sufficient!

• Proof 1: Programmable logic array proves that

any truth table can be built from AND/OR/NOT.

• Proof 2: Can synthesize AND/OR/NOT from

NAND/NOR, though it may take more gates.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall Semester 2014

Combinational Logic

Combinational Circuit to Truth Table

A B C V W X Y Z

0 0 0 1 0 0 0 1

0 0 1 0 0 1 1 1

0 1 0 1 0 1 0 1

0 1 1 0 0 0 1 1

1 0 0 0 0 0 1 1

1 0 1 0 0 1 1 1

1 1 0 0 1 1 0 0

1 1 1 0 1 0 0 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall Semester 2014

Combinational Logic

Truth Table to Combinational Circuit

A B C X Y

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 1

1 0 1 0 1

1 1 0 0 0

1 1 1 0 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall Semester 2014

Combinational Logic

Decoder Circuit

n inputs, 2n outputs

 exactly one output is 1 for each input pattern

A B O00 O01 O10 O11

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall Semester 2014

Combinational Logic

Multiplexer Circuit
n-bit selector and 2n inputs, one output

 output equals one of the inputs, depending on

selector

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall Semester 2014

Combinational Logic

Full Adder Circuit
Add two bits and carry-in,

produce one-bit sum and carry-out.

A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall Semester 2014

Sequential Circuits

Difference from Combinational

Sequential circuits differ from combinational

circuits because they have persistent state.

 For a combinational circuit, the outputs depend only

on the inputs.

 For a sequential circuit, the outputs depend on the

inputs and the state.

 Sequential circuits can be used to implement a finite

state machine.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall Semester 2014

Sequential Circuits

S-R Latch Circuit
Suppose we start with output = 0, then change S

to zero (Set), latch state will change to 1.

Or we start with output = 1, then change R to

zero (Reset), latch state will change to 0.

Setting S or R back to 1 makes latch quiescent,

never do S = R = 0!
Output changes to one.

1

1

0

0

1

1

0

1

1

1

0

0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall Semester 2014

Sequential Circuits

D-Latch Circuit
Two inputs: D (data) and WE (write enable)

 when WE = 1, latch is set to value of D

S = NOT(D), R = D

 when WE = 0, latch holds previous value

S = R = 1

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Fall Semester 2014

Sequential Circuits

Exhaustive Testing

How many test cases for combinational logic?

 2n, where n is the number of input bits

 Example: 4-bit decoder requires 16 test cases

How many test cases for sequential logic?

 2n * 2m, where m is number of states

 Example: 1-bit D-latch requires 8 test cases

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Fall Semester 2014

Sequential Circuits - Memory Architecture

address

decoder

word select word WE
address

write

enable

input bits

output bits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Fall Semester 2014

Sequential Circuits

Memory Address Space and Width
Now that we know how to store bits,

we can build a memory – a logical k × m array

of

stored bits.

•
•
•

k = 2n

locations

m bits

Address Space:

number of locations
(usually a power of 2)

Address Width (Addressability):

number of bits per location
(e.g., byte-addressable)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finite State Machines

Finding States from Inputs

• Just follow the arrows,

for example:

• Starting state is ‘A’

• Inputs given:

 64, 13, 29, 47

• States visited:

 C, D, C, E

• State outputs:

 2, 3, 2, 4

32 CS270 - Fall Semester 2014

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Finite State Machines

Finding Inputs from States

• Just follow the arrows,

for example:

• Starting state is ‘C’

• States visited:

 E, A, B, A, C

• Inputs given:

 47, 33, 27, 99, 64

• Not all paths are

possible!

33 CS270 - Fall Semester 2014

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34 CS270 - Fall Semester 2014

C Programming

Bit Manipulation

C code to read or write a bit:
int readBit(int value, int bit) {

 return (value >> bit) & 01;

 // return !!(value >> bit);

}

void writeBit(int *value, int bit) {

 *value |= 1<<bit;

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35 CS270 - Fall Semester 2014

C Programming

Control Structures

C conditional and iterative statements

 if statement
 if (value == 0x12345678)

 printf("value matches 0x12345678\n");

 for loop
 for (int i = 0; i < 8; ++i)

 printf("i = %d\n", i);

 while loop
 int j = 6;

 while (j--)

 printf("j = %d\n", j);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36 CS270 - Fall Semester 2014

C Programming

Pointers and Arrays

C pointers and arrays
void foo(int *pointer)

{

 *(pointer+0) = pointer[2] = 0x1234;

 *(pointer+1) = pointer[3] = 0x5678;

}

int main(int argc, char *argv[])

{

 int array[]= {0, 1, 2, 3};

 foo(array);

 for (int i = 0; i <= 3; ++i)

 printf("array[%d] = %x\n", i, array[i]);

 }

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37 CS270 - Fall Semester 2014

gdb Debugger

Basic Commands

• How to debug a program using gdb:
$ gdb a.out // debug a program

(gdb) break main // set breakpoint on function

(gdb) break 23 // set breakpoint in file

(gdb) run // run program

(gdb) list 20 // list current file

(gdb) step // single step

(gdb) print v // display value of variable

(gdb) print *p // deference pointer and display

(gdb) quit // quit debugger

• Commands can be single letters (b, r, l, s, p, q)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

38 CS270 - Fall Semester 2014

Programming Basics

Programming Constructs

Task

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test

condition

Subtask

Test

condition

Sequential Conditional Iterative

True

True

False
False

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

39 CS270 - Fall Semester 2014

LC-3

Architecture

System

Architecture

Combinational

Logic

State Machine

Storage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

40 CS270 - Fall Semester 2014

LC-3 Architecture

Instruction Set (First Half)

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

41 CS270 - Fall Semester 2014

LC-3 Architecture

Instruction Set (Second Half)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

42 CS270 - Fall Semester 2014

LC-3 Architecture

Addressing Modes

Load -- read data from memory to register

 LD: PC-relative mode

 LDR: base+offset mode

 LDI: indirect mode

Store -- write data from register to memory

 ST: PC-relative mode

 STR: base+offset mode

 STI: indirect mode

Load pointer: compute address, save in register

 LEA: immediate mode

 does not access memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

43 CS270 - Fall Semester 2014

LC-3 Architecture

Machine Code to Assembly

• What is the assembly code for machine

instruction 0101010010111101?

• Step 1) Identify opcode: 0101 = AND

• Step 2) Parse entire instruction (use reference)

• Step 3) Get values from each field

 OPCODE DR SR 1 imm5

 15:12 11:9 8:6 5 4:0

 0101 010 010 1 11101

 AND R2 R2 -3

• Step 4) Translate to mnemonics: AND R2,R2,#-3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

• What is the machine code for assembly

instruction NOT R7,R6?

• Step 1) Identify opcode: NOT = 1001

• Step 2) Put values into each field:

 NOT R7 R6

 OPCODE DR SR 111111

 15:12 11:9 8:6 5:0

 1001 111 110 111111

• Step 3) Build machine instruction: 1001111110111111

44 CS270 - Fall Semester 2014

LC-3 Architecture

Assembly to Machine Code

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

45 CS270 - Fall Semester 2014

LC-3 Architecture

Assembly Code Syntax
 .ORIG x3000

MAIN AND R0,R0,#0 ; Initialize Sum

 JSR COMPUTE ; Call function

 ST R0, SUM ; Store Sum

 HALT ; Program complete

COMPUTE LD R1,OPERAND1 ; Load Operand1

 LD R2,OPERAND2 ; Load Operand2

 ADD R0,R1,R2 ; Compute Sum

 RET ; Function return

;; Input data set

OPERAND1 .FILL x1234 ; Operand1

OPERAND2 .FILL x4321 ; Operand2

SUM .BLKW 1 ; Sum

 .END

