CS270 Midterm Fall 2014

I, the undersigned, do hereby affirm that the work contained in this exam is solely my own, an results were achieved by cheating. This includes using automated tools to generate answers, s answers off the web, etc. Please do the work yourself.	
Name (printed legibly)	
Signature	-
9-digit Student ID	
(printed legibly)	

Grading

	Possible	Actual
Section	Points	Points
Number	30	
Representation	20	
Floating Point	15	
Numbers	13	
Combinational	20	
Logic	20	
Sequential	10	
Logic	10	
LC-3	15	
Architecture	13	
C Programming	10	
Criogramming	10	
Total	100	
10141	100	

Problems 1-10 are about number representation and number conversion, no calculators anowed:
1) How many bits in a byte and bytes in a 64-bit word? (2 points)
, and a great are great and a great are (Promise and
8, 8
2) How many bits are required to represent 1015 unique patterns? How many are left over? (2 points)
10, 9
3) What is the binary equivalent of the hexadecimal number 0xABCD0123? (2 points)
0b 1010 1011 1100 1101 0000 0001 0010 0011
A) W/I (
4) What is the hexadecimal equivalent of the binary number 0b1100 0101 1001 1111? (2 points)
0x C59F
5) What is the decimal equivalent of the binary number 0b01110101? (2 points)
117
6) What is the binary equivalent of the decimal number $256 + 64 + 32 + 16 + 2 + 1 = 371$? (2 points)
what is the omary equivalent of the decimal number 250 + 64 + 32 + 16 + 2 + 1 - 3/1? (2 points)
0b 101110011
7) What is the (fixed-point) binary equivalent of the decimal number 5.625? (2 points)
101.101

8) What is the (fixed point) decimal equivalent of the binary number 1110.011? (2 points)

14.375

9) Translate the string "CS270" into decimal ASCII values (Hint: ASCII 'A' = 65, ASCII '0' = 48). (3 points)

67 83 50 55 48

10) What is the decimal value of the 8-bit 2's complement binary number 0b11110110? (2 points)

-10

11) Translate the decimal values below into 8-bit 2's complement binary values and do the arithmetic. (6 points)

- 17 **0b00010001** 32 **0b00100000**
- $+ 9 \quad \mathbf{0b00001001} \quad + -8 \quad \mathbf{0b11111000}$
- $= 26 \quad \mathbf{0b00011010} \qquad = 24 \quad \mathbf{0b00011000}$

12) Show the result of the following logical operations in hexadecimal. Space is provided for binary values that may help you solve the problem but will not be graded (3 points)

 $= 0x34 \qquad \qquad = 0xFF \qquad \qquad = 0xF0$

Problems 13-15 should be answered based on the IEEE 754 single-precision format.

HINT: 1 sign bit, 8 exponent bits, biased by 127, and 23 fractional bits, with an implicit 1.

13) What are the binary values of the fields of the IEEE 754 single-precision format of 12.25? (3 points)

Sign = 0 (positive)

Exponent: 10000010 (130)

Mantissa: 1.**10001**...

Show your work for partial credit:

sign = 0, exponent = 131-127=4, mantissa = 1.11b = 1.75, * $2^4 = 28.0$

15) Fill in the values below for each step to add the floating point numbers x = 2.25 and y = 4.125. (8 points)

x = 2.25 = 0x40100000, y = 4.125 = 0x40840000, sum = x + y

What is the (unbiased) exponent of x, in decimal? 1 (128 biased)

What is the (unbiased) exponent of y, in decimal? 2 (129 biased)

What is the mantissa of x in binary, with the implicit 1 shown? 1.001 (1.125 decimal)

What is the mantissa of y in binary, with the implicit 1 shown? 1.00001 (1.03125 decimal)

What is the mantissa of the sum after normalization? 1.10011

What is the (unbiased) exponent of the sum, after normalization? 2 (129 biased)

What is the hexadecimal value of the sum? **0x40CC0000**

What is the decimal value of the sum? 6.375

Problems 16-20 cover transistors, gates, and basic circuits.

16) Analyze the transistor circuits shown below and complete the truth table. Hint: A p-type transistor is closed with 0 input and open with 1 input, an n-type transistor the opposite. (4 points)

A	В	T1 (p-type)	T2 (p-type)	T3 (n-type)	T4 (n-type)	C
0	0	Closed	Closed	Open	Open	1
0	1	Closed	Open	Open	Closed	0
1	0	Open	Closed	Closed	Open	0
1	1	Open	Open	Closed	Closed	0

17) How many select lines are needed for a 16 to 1 multiplexer? (2 points)

4 lines

18) For a 4-bit adder, what are the outputs for the inputs 0x8 and 0x9, if the CarryIn bit is 1. (4 Points)

Sum = 2 Carryout = 1

19) Analyze the combination logic shown below and complete the truth table. (6 Points)

A	В	X	Y	Z
0	0	1	1	1
0	1	1	1	1
1	0	1	0	0
1	1	0	0	1

20) Connect the output of the appropriate AND gates to the OR gates to fulfill the truth table below. (4 points)

A	В	X	Y
0	0	1	0
0	1	0	0
1	0	0	1
1	1	1	1

Problems 21 and 22 cover sequential logic and state machines.

21) Fill in the truth table for the D latch circuit show below. (5 points)

Data (D)	Enable (EN)	Previous State	Output (Q)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

22) If the state machine below starts in State 0 and is sent the input pattern 92, 44, 44, 11, 82, 29, 65, 12, what is the output and final state? (5 points)

Output: 14, 19, 19, 72, 33, 14, 35, 23

Final State: 0

Problems 23-27 are related to LC-3 architecture and LC-3 assembly code.

23) What are the address space, word size, and number of registers on the LC-3 computer? (3 points)

65536 or 16-bits or 2¹⁶, 16-bits, 8 registers

24) Translate the following instruction into a hexadecimal value: AND R3,R6,#5 (3 points)

0x57A5 or 0b 0101 0111 1010 0101

25) Translate the following hexadecimal value into an assembly instruction: 0x94FF (3 points)

NOT R2,R3

26) What is in the PC offset field of the following LC-3 branch instruction? (3 points)

BRnp LABEL AND R2,R2,#0 AND R3,R3,#0

LABEL .FILL x1234

 $PC ext{ offset} = 2$

27) What are the values in R0, R1, and R2 after the following code executes? (3 points)

BR MAIN .FILL xABCD DATA0 .FILL x1234 DATA1 DATA2 .FILL xFFF6 **MAIN** LD R0, DATA0 LD R1, DATA1 LD R2, DATA2 BRp NEXT1 AND R0,R0,#0 NOT R0,R0 NEXT1 BRp NEXT2 AND R2,R2,#F ADD R1,R2,R1 NEXT2

R0 = 0xFFFF

R1 = 0x123A

 $\mathbf{R2} = \mathbf{0}\mathbf{x}\mathbf{0}\mathbf{0}\mathbf{0}\mathbf{6}$

HALT

Questions 28-32 are related to the C program shown below, fill in what is printed. Note that the questions are in order of execution. (4 points each)

#include <stdio.h>

```
void doubleArray(int array[], int length) {
       for (int i = 0; i < length-2; i++) {
              array[i] += array[i];
       }
       length += 5;
       printf("%d\n", length);
                                            // Question 29
}
int main(int argc,char *argv[]) {
       int integers [6] = \{3, 4, 5, 6, 7, 8\};
       int length = 6;
       printf("%d\n", integers[4]);
                                                   // Question 28
       doubleArray(integers, length);
       printf("\%d\n", *(integers + 3));
                                            // Question 30
       printf("\sqrt[6]{d}", *(integers + 4));
                                            // Question 31
       printf("%d\n", length);
                                            // Question 32
}
28)7
29) 11
30) 12
31)7
32)6
```

Appendix A) LC-3 Computer Schematic

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that modify condition codes

ratch paper, please do not put any answers here unless you reference this page in an answer!	