

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.	
Instruction Set Architecture	LC-3 (
ISA = All of the programmer-visible	Memory
components and operations of the computer	 addre
memory organization	 addre
• address space how may locations can be addressed?	Registe
addressibility how many bits per location?	tempo
 register set how many? what size? how are they used? 	ac
 instruction set 	eight
opcodes	• ea
 data types 	• bo
 addressing modes 	• other
ISA provides all information needed for someone that	
wants to write a program in machine language	• no
 or translate from a high-level language to machine language. 	by)
	• P0
CS 270 - Fall Semester 2016 3	

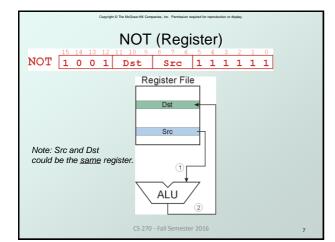
CS 270 - Fall Semester 2016

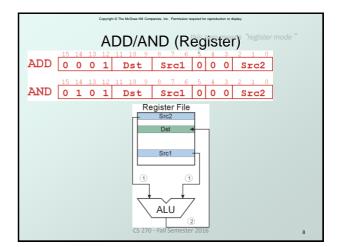
LC-3 Overview: Instruction Set

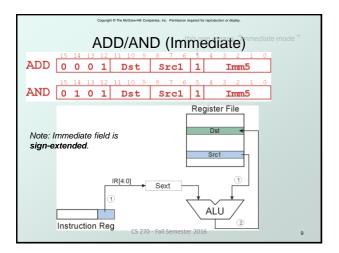
Opcodes

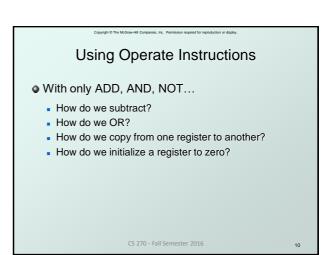
- 15 opcodes, 3 types of instructions
- Operate: ADD, AND, NOT
- Data movement: LD, LDI, LDR, LEA, ST, STR, STI
- Control: BR, JSR/JSRR, JMP, RTI, TRAP
- some opcodes set/clear condition codes, based on result:
 - $\bullet N$ = negative, Z = zero, P = positive (> 0)
- Data Types
 - 16-bit 2's complement integer

Addressing Modes


- How is the location of an operand specified?
- non-memory addresses: immediate, register
- memory addresses: PC-relative, indirect, base+offset


Operate Instructions Only three operations: ADD, AND, NOT Source and destination operands are registers These instructions <u>do not</u> reference memory.

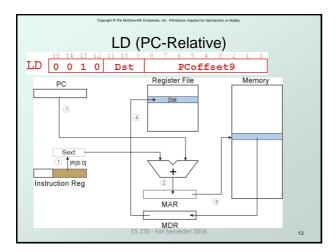

- ADD and AND can use "immediate" mode,
- where one operand is hard-wired into the instruction.
- Will show dataflow diagram with each instruction.
 - illustrates <u>when</u> and <u>where</u> data moves to accomplish the desired operation

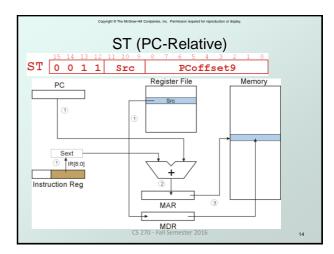

CS 270 - Fall Semester 2016

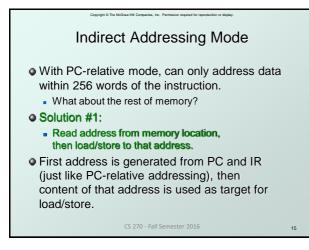
Data Movement Instructions Load -- read data from memory to register LD: PC-relative mode LDR: base+offset mode LDI: indirect mode

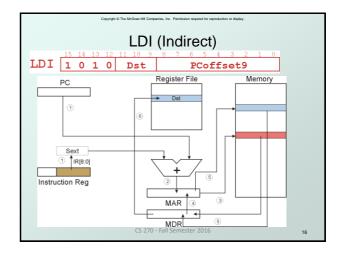
wight © The McGraw Hill Companies Inc. Remission maximal for resenduction or depin

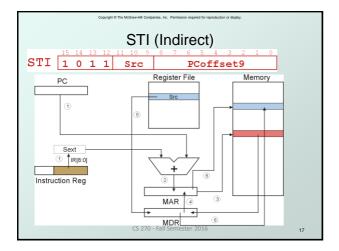
- Store -- write data from register to memory
 - ST: PC-relative mode
 - STR: base+offset mode
 - STI: indirect mode
- Load effective address -- compute address, save in register
 - LEA: immediate mode
 - does not access memory

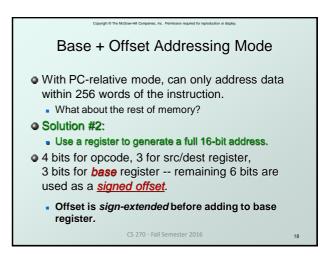

CS 270 - Fall Semester 2016

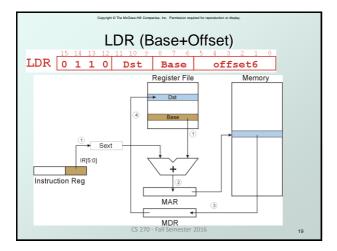

11

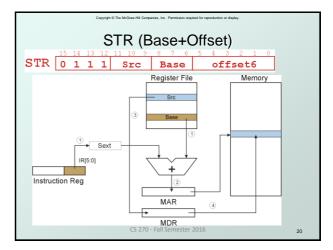

Copyright @ The McGraw-Hill Companies. Inc. Permission required for reproduction or display PC-Relative Addressing Mode • Want to specify address directly in the instruction But an address is 16 bits, and so is an instruction! After subtracting 4 bits for opcode and 3 bits for register, we have 9 bits available for address. Solution: • Use the 9 bits as a signed offset from the current PC. • 9 bits: $-256 \le offset \le +255$ • Can form address such that: $PC - 256 \le X \le PC + 255$ Remember that PC is incremented as part of the FETCH phase; This is done <u>before</u> the EVALUATE ADDRESS stage.

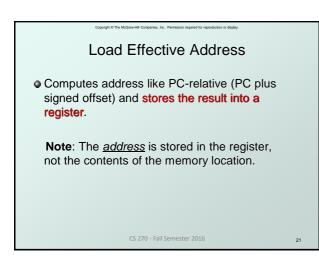

CS 270 - Fall Semester 2016

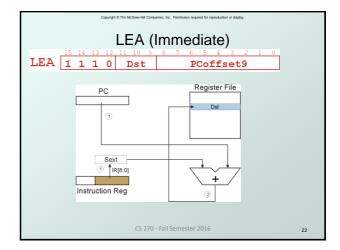

12

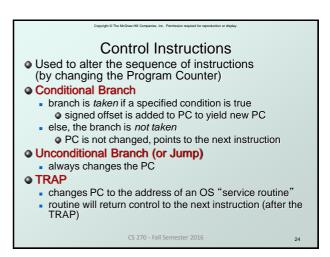


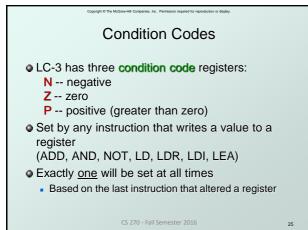


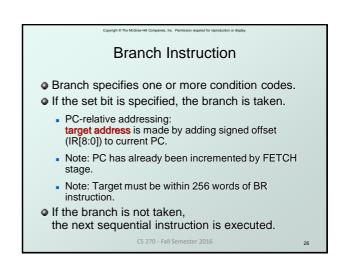


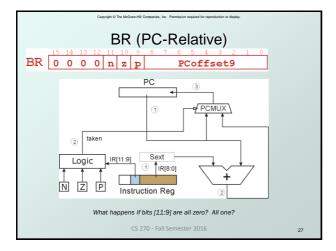


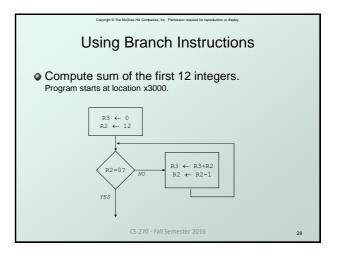


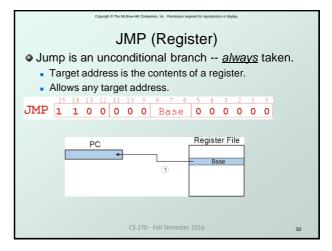


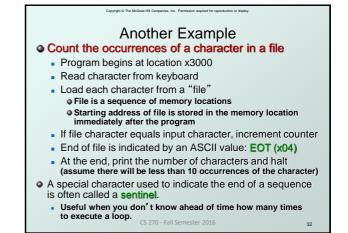


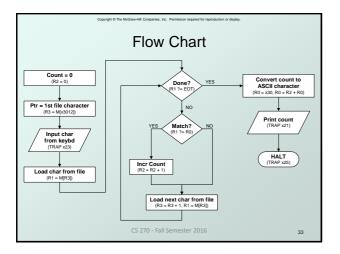




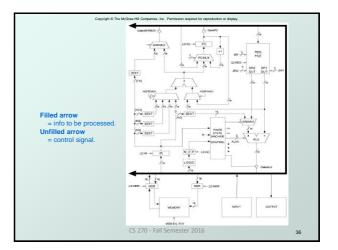

				Copy	right ©	The M	cGraw-	HII Co	mpanie	as, Inc	. Perm	ission	equire	d for re	produc	tion or	display.
	Example																
Address							In	stru	ıct	ion							Comments
x30F6	1	1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1															R1 ← PC - 3 = x30F4
x30F7	0	0	0	1	0	1	0	0	0	1	1	0	1	1	1	0	R2 ← R1 + 14 = x3102
x30F8	0	0	1	1	0	1	0	1	1	1	1	1	1	0	1	1	M[PC - 5] ← R2 M[x30F4] ← x3102
x30F9	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2 ← 0
x30FA	0	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	R2 ← R2 + 5 = 5
x30FB	0	1	1	1	0	1	0	0	0	1	0	0	1	1	1	0	M[R1+14] ← R2 M[x3102] ← 5
x30FC	1	0 opc	1 code	0	0	1	1	1	1	1	1	1	0	1	1	1	R3 ← M[M[x30F4]] R3 ← M[x3102] R3 ← 5
							CS	5 27	0 - F	all	Sem	este	er 20	016			23







				Сору	right ⊂	The N	loGraw	HIC	ompani	ies, Inc	. Pern	nission	requin	ad for r	eprodu	ction o	ar display.
Sample Program																	
Address							In	stru	ıcti	ion							Comments
x3000	1	1	1	0	0	0	1	0	1	1	1	1	1	1	1	1	R1 ← x3100 (PC+0xFF)
x3001	0	1	0	1	0	1	1	0	1	1	1	0	0	0	0	0	R3 ← 0
x3002	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2 ← 0
x3003	0	0	0	1	0	1	0	0	1	0	1	0	1	1	0	0	R2 ← 12
x3004	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1	If Z, goto x300A (PC+5)
x3005	0	1	1	0	1	0	0	0	0	1	0	0	0	0	0	0	Load next value to R4
x3006	0	0	0	1	0	1	1	0	1	1	0	0	0	0	0	1	Add to R3
x3007	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	Increment R1 (pointer)
X3008	0	0	0	1	0	1	0	0	1	0	1	1	1	1	1	1	Decrement R2 (counter)
x3009	0	0	0	0	1	1	1	1	1	1	1	1	1	0	1	0	Goto x3004 (PC-6)
							С	S 27	0 - 1	Fall	Sem	nest	er 2	016			29


	Copyright © The M	toGraw-Hill Companies, Inc. Permission required for reproduction or display.												
	TRAP													
TRAP 1 1	13 12 1 1 1	11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 trapvect8 1 1 0 1 0 1 0 1 1 0 1 1 0 <th1< th=""> 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> 1 1 1</th1<></th1<>												
• Calls a service routine, identified by 8-bit "trap														
vector."	vector	routine												
	x23	x23 input a character from the keyboard												
	x21	output a character to the monitor												
	x25	halt the program												
• When routine is done,														
		instruction following TRAP.												
 vve li taik 	about no													
		CS 270 - Fall Semester 2016 3	11											

				Сору	right ©	The N	lcGraw	HI C	ompani	ies, Inc	. Pern	nission	requin	ad for r	eprodu	ction c	r display.
						P	rc	g	ra	an	n	(1		of	2	2)	
Address	_						In	stru	uct	ion							Comments
x3000	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2 ← 0 (counter)
x3001	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	R3 ← M[x3102] (ptr)
x3002	1	1	1	1	0	0	0	0	0	0	1	0	0	0	1	1	Input to R0 (TRAP x23)
x3003	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	R1 ← M[R3]
x3004	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	0	R4 ← R1 - 4 (EOT)
x3005	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	If Z, goto x300E
x3006	1	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	R1 ← NOT R1
x3007	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	R1 ← R1 + 1
X3008	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	R1 ← R1 + R0
x3009	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	If N or P, goto x300B
							С	S 27	0 -	Fall	Sem	nest	er 2	016			34

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.																	
	Program (2 of 2)																
Address							Ins	stru	ıcti	ion							Comments
x300A	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	R2 ← R2 + 1
x300B	0	0	0	1	0	1	1	0	1	1	1	0	0	0	0	1	R3 ← R3 + 1
x300C	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	R1 ← M[R3]
x300D	0	0	0	0	1	1	1	1	1	1	1	1	0	1	1	0	Goto x3004
x300E	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	R0 ← M[x3013]
x300F	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	R0 ← R0 + R2
x3010	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	1	Print R0 (TRAP x21)
x3011	1	1	1	1	0	0	0	0	0	0	1	0	0	1	0	1	HALT (TRAP x25)
X3012			St	ar	ti	ng	A	dd	re	ss	0	f	Fi	le			
x3013	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	ASCII x30 ('0')
							CS	270) - F	all S	iem	este	er 20	016			35

Data Path Components

Global bus

- special set of wires that carry a 16-bit signal to many components
- inputs to the bus are "tri-state devices", that only place a signal on the bus when they are enabled
- only one (16-bit) signal should be enabled at any time o control unit decides which signal "drives" the bus
- any number of components can read the bus
 - register only captures bus data if it is write-enabled by the control unit

Memory

- Control and data registers for memory and I/O devices
- memory: MAR, MDR (also control signal for read/write) CS 270 - Fall Semester 2016

37

Data Path Components

ALU

- Accepts inputs from register file
- and from sign-extended bits from IR (immediate field). Output goes to bus.
- used by condition code logic, register file, memory Register File

- Two read addresses (SR1, SR2), one write address (DR)
- Input from bus
- result of ALU operation or memory read Two 16-bit outputs
 - used by ALU, PC, memory address • data for store instructions passes through ALU

right © The McGraw Hill Companies Inc. Remission maximal for momentation or der Data Path Components

PC and PCMUX

- Three inputs to PC, controlled by PCMUX
 - 1.PC+1 FETCH stage
 - 2.Address adder BR, JMP
 - 3.bus TRAP (discussed later)

MAR and MARMUX

- Two inputs to MAR, controlled by MARMUX
 - 1.Address adder LD/ST, LDR/STR
 - 2.Zero-extended IR[7:0] -- TRAP (discussed later)

CS 270 - Fall Semester 2016

Copyright @ The McGraw-Hill Companies. Inc. Permission required for reproduction or display

Data Path Components

- Condition Code Logic
 - Looks at value on bus and generates N, Z, P signals
 - Registers set only when control unit enables them (LD.CC) only certain instructions set the codes (ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit – Finite State Machine

- On each machine cycle, changes control signals for next phase of instruction processing
 - who drives the bus? (GatePC, GateALU, ...)
 - which registers are write enabled? (LD.IR, LD.REG, ...)
 - which operation should ALU perform? (ALUK)
- Logic includes decoder for opcode, etc.

CS 270 - Fall Semester 2016

40