
1

Chapter 9
TRAP Routines and

Subroutines

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

System Calls

Certain operations require specialized knowledge
and protection:
n  specific knowledge of I/O device registers

and the sequence of operations needed to use them
n  I/O resources shared among multiple users/programs;

a mistake could affect lots of other users!
Not every programmer knows (or wants to know)
this level of detail
Solution: provide service routines or system calls
(in operating system) to safely and conveniently
perform low-level, privileged operations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

System Call

1. User program invokes system call.
2. Operating system code performs operation.
3. Returns control to user program.

In LC-3, this is done through the TRAP mechanism.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

LC-3 TRAP Mechanism
1. A set of service routines.
n  part of operating system -- routines start at arbitrary

addresses (convention is that system code is below x3000)
n  up to 256 routines

2. Table of starting addresses.
n  stored at x0000 through x00FF in memory
n  called System Control Block in some architectures

3. TRAP instruction.
n  used by program to transfer control to operating system
n  8-bit trap vector names one of the 256 service routines

4. A linkage back to the user program.
n  want execution to resume immediately after the TRAP

instruction

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

TRAP Instruction

Trap vector
n  identifies which system call to invoke
n  8-bit index into table of service routine addresses

in LC-3, this table is stored in memory at 0x0000 – 0x00FF
8-bit trap vector is zero-extended into 16-bit memory address

Where to go
n  lookup starting address from table; place in PC

How to get back
n  save address of next instruction (current PC) in R7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

TRAP

NOTE: PC has already been incremented during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

RET (JMP R7)

How do we transfer control back to
instruction following the TRAP?
We saved old PC in R7.
n  JMP R7 gets us back to the user program at the

right spot.
n  LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.
Must make sure that service routine does not
change R7, or we won’t know where to return.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

TRAP Mechanism Operation

1.  Lookup starting address.
2.  Transfer to service routine.
3.  Return (JMP R7).

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Example: Using the TRAP Instruction
 .ORIG x3000
 LD R2, TERM ; Load negative ASCII ‘7’

 LD R3, ASCII ; Load ASCII difference
AGAIN TRAP x23 ; input character

 ADD R1, R2, R0 ; Test for terminate
 BRz EXIT ; Exit if done
 ADD R0, R0, R3 ; Change to lowercase
 TRAP x21 ; Output to monitor...
 BRnzp AGAIN ; ... again and again...

TERM .FILL xFFC9 ; -‘7’
ASCII .FILL x0020 ; lowercase bit
EXIT TRAP x25 ; halt

 .END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Example: Output Service Routine
 .ORIG x0430 ; syscall address
 ST R7, SaveR7 ; save R7 & R1
 ST R1, SaveR1

; ----- Write character
TryWrite LDI R1, CRTSR ; get status
 BRzp TryWrite ; look for bit 15 on
WriteIt STI R0, CRTDR ; write char
; ----- Return from TRAP
Return LD R1, SaveR1 ; restore R1 & R7

 LD R7, SaveR7
 RET ; back to user

CRTSR .FILL xF3FC
CRTDR .FILL xF3FF
SaveR1 .FILL 0
SaveR7 .FILL 0

 .END

stored in table,
location x21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

TRAP Routines and their Assembler
Names

vector symbol routine

x20 GETC read a single character (no echo)

x21 OUT output a character to the monitor

x22 PUTS write a string to the console

x23 IN
print prompt to console, read and

echo character from keyboard
x25 HALT halt the program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Saving and Restoring Registers
Must save the value of a register if:
n  Its value will be destroyed by service routine
and
n  We will need to use the value after that action.

Who saves?
n  caller of service routine?

knows what it needs later, but may not know what
gets altered by called routine

n  called service routine?
•  knows what it alters, but does not know what will be

needed later by calling routine

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Example
 LEA R3, Binary ; load pointer
 LD R6, ASCII ; char to digit
 LD R7, COUNT ; initialize to 10
AGAIN TRAP x23 ; get character
 ADD R0, R0, R6 ; convert to number
 STR R0, R3, #0 ; store number
 ADD R3, R3, #1 ; increment pointer
 ADD R7, R7, -1 ; decrement counter
 BRp AGAIN ; more?
 BRnzp NEXT
ASCII .FILL xFFD0
COUNT .FILL #10
Binary .BLKW #10

What’s wrong with this routine?
What happens to R7?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Saving and Restoring Registers
Called routine -- “callee-save”
n  Before start, save any registers that will be altered

(unless altered value is desired by calling program!)
n  Before return, restore those same registers

Calling routine -- “caller-save”
n  Save registers destroyed by own instructions or

by called routines (if known), if values needed later
save R7 before TRAP
save R0 before TRAP x23 (input character)

n  Or avoid using those registers altogether

Values are saved by storing them in memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Question

Can a service routine call another service
routine?
If so, is there anything special the calling service
routine must do?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

What about User Code?

Service routines provide three main functions:
1.  Shield programmers from system-specific details.
2.  Write frequently-used code just once.
3.  Protect system resources from malicious/clumsy

programmers.
Are there any reasons to provide the same
functions for non-system (user) code?

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Subroutines
A subroutine is a program fragment that:
n  lives in user space
n  performs a well-defined task
n  is invoked (called) by another user program
n  returns control to the calling program when finished

Like a service routine, but not part of the OS
n  not concerned with protecting hardware resources
n  no special privilege required

Reasons for subroutines:
n  reuse useful (and debugged!) code without having to

keep typing it in
n  divide task among multiple programmers
n  use vendor-supplied library of useful routines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

JSR Instruction

Jumps to a location (like a branch but
unconditional), and saves current PC (addr of
next instruction) in R7.
n  saving the return address is called “linking”
n  target address is PC-relative (PC + Sext(IR[10:0]))
n  bit 11 specifies addressing mode

•  if =1, PC-relative: target address = PC + Sext(IR[10:0])
•  if =0, register: target address = contents of register IR[8:6]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

JSR

NOTE: PC has already been incremented during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

JSRR Instruction

Just like JSR, except Register addressing mode.
n  target address is Base Register
n  bit 11 specifies addressing mode

What important feature does JSRR provide
that JSR does not?

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

JSRR

NOTE: PC has already been incremented during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Returning from a Subroutine

RET (JMP R7) gets us back to the calling
routine.
n  just like TRAP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits
 ADD R0, R0, #1 ; add one
 RET ; return to caller

To call from a program (within 1024 instructions):
; need to compute R4 = R1 - R3

 ADD R0, R3, #0 ; copy R3 to R0
 JSR 2sComp ; negate
 ADD R4, R1, R0 ; add to R1
 ...

Note: Caller should save R0 if we’ll need it later!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Passing Information to/from
Subroutines

Arguments
n  A value passed in to a subroutine is an argument.
n  This is a value needed by the subroutine to do its job.
n  Examples:

•  In 2sComp routine, R0 is the number to be negated
•  In OUT service routine, R0 is the character to be printed.
•  In PUTS routine, R0 is address of string to be printed.

Return Values
n  A value passed out of a subroutine is a return value.
n  You called the subroutine to compute this value!
n  Examples:

•  In 2sComp routine, negated value is returned in R0.
•  GETC service routine returns char from the keyboard in R0.

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Using Subroutines

In order to use a subroutine, a programmer must
know:
n  its address (or at least a label that will be bound to its

address)
n  its function (what does it do?)

NOTE: The programmer does not need to know
how the subroutine works, but what changes are visible in
the machine’s state after the routine has run.

n  its arguments (where to pass data in, if any)
n  its return values (where to get computed data, if any)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Saving and Restore Registers
Since subroutines are just like service routines,
we also need to save and restore registers, if
needed.
Generally use “callee-save” strategy,
except for return values.
n  Save anything that the subroutine will alter internally

that shouldn’t be visible when the subroutine returns.
n  It’s good practice to restore incoming arguments to

their original values (unless overwritten by return value).
Remember: You MUST save R7 if you call any
other subroutine or service routine (TRAP).
n  Otherwise, you won’t be able to return to caller.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Example
(1)  Write a subroutine FirstChar to:

find the first occurrence
of a particular character (in R0)
in a string (pointed to by R1);
return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:
counts the number of occurrences
of a particular character (in R0)
in a string (pointed to by R1);
return count in R2.

Can write the second subroutine first,
without knowing the implementation of FirstChar!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R3 <- M(R2)

R3=0

R1 <- R2 + 1

restore
regs

return

no

yes

save R7,
since we’re using JSR

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

CountChar Implementation
; subroutine to count occurrences of a char
CountChar

 ST R3, CCR3 ; save registers
 ST R4, CCR4
 ST R7, CCR7 ; JSR alters R7
 ST R1, CCR1 ; save original pointer
 AND R4, R4, #0 ; count = 0
CC1 JSR FirstChar ; find next occurrence
 LDR R3, R2, #0 ; null?
 BRz CC2 ; done if null
 ADD R4, R4, #1 ; increment count
 ADD R1, R2, #1 ; increment pointer
 BRnzp CC1
CC2 ADD R2, R4, #0 ; return value to R2
 LD R3, CCR3 ; restore regs
 LD R4, CCR4
 LD R1, CCR1
 LD R7, CCR7

 RET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

FirstChar Algorithm

save regs

R2 <- R1

R3 <- M(R2)

R3=0

R3=R0

R2 <- R2 + 1

restore
regs

return

no

no

yes

yes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

FirstChar Implementation
; subroutine to find first occurrence of a char
FirstChar

 ST R3, FCR3 ; save registers
 ST R4, FCR4 ; save original char
 NOT R4, R0 ; negate for comparisons
 ADD R4, R4, #1
 ADD R2, R1, #0 ; initialize pointer
FC1 LDR R3, R2, #0 ; read character
 BRz FC2 ; if null, we’re done
 ADD R3, R3, R4 ; see if matches input
 BRz FC2 ; if yes, we’re done
 ADD R2, R2, #1 ; increment pointer
 BRnzp FC1
FC2 LD R3, FCR3 ; restore registers
 LD R4, FCR4
 RET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Spring Semester 2016

Library Routines
Vendor may provide object files containing
useful subroutines
n  don’t want to provide source code -- intellectual

property
n  assembler/linker must support EXTERNAL symbols

(or starting address of routine must be supplied to user)
 .EXTERNAL SQRT
 ...

 LD R2, SQAddr ; load SQRT addr
 JSRR R2

...
SQAddr .FILL SQRT
Using JSRR, because we don’t know whether
SQRT is within 1024 instructions.

