
3/11/16

1

Chapter 10
Memory Model for

Program Execution

Original slides by Chris Wilcox,
Colorado State University

1 2

Problem
How do we allocate memory during the execution of a

program written in C?
 Programs need memory for code and data such as

instructions, global and local variables, etc.
 Modern programming practices encourage many

(reusable) functions, callable from anywhere.
 Some memory can be statically allocated, since the

size and type is known at compile time.
 Some memory must be allocated dynamically, size

and type is unknown at compile time.

2

3

Motivation
Why is memory allocation important? Why not just

use a memory manager?
 Allocation affects the performance and memory

usage of every C, C++, Java program.
 Current systems do not have enough registers to

store everything that is required.
 Memory management is too slow and cumbersome

to solve the problem.
 Static allocation of memory resources is too

inflexible and inefficient, as we will see.

3 4

Goals
What do we care about?
n Fast program execution
n Efficient memory usage
n Avoid memory fragmentation
n Maintain data locality
n Allow recursive calls
n Support parallel execution
n Minimize resource allocation
n Memory should never be allocated for functions

that are not executed.

3/11/16

2

5

Function Call
Consider the following code:

// main program
int a = 10;
int b = 20
c = foo(a, b);
int foo(int x, int y)
{
 int z;
 z = x + y;
 return z;
}

 What needs to be stored?
n Code, parameters, locals, globals, return values

5 6

Storage Requirements
Code must be stored in memory so that we can
execute the function.
The return address must be stored so that control
can be returned to the caller.
Parameters must be sent from the caller to the
callee so that the function receives them.
Return values must be sent from the callee to the
caller, that’s how results are returned.
Local variables for the function must be stored
somewhere, is one copy enough?

6

7

Possible Solution:
Mixed Code and Data

Function implementation:

foo JMP foo_begin # skip over data
foo_rv .BLKW 1 # return value
foo_ra .BLKW 1 # return address
foo_paramx .BLKW 1 # ‘x’ parameter
foo_paramy .BLKW 1 # ‘y’ parameter
foo_localz .BLKW 1 # ‘z’ local
foo_begin ST R7, foo_rv # save return
 …
 LD R7, foo_ra # restore return
 RET

Can construct data section by appending foo_
7 8

Possible Solution:
Mixed Code and Data

Calling sequence

 ST R1, foo_paramx # R1 has ‘x’
 ST R2, foo_paramx # R2 has ‘y’
 JSR foo # Function call
 LDR R3, foo_rv # R3 = return value

Code generation is relatively simple.
Few instructions are spent moving data.

8

3/11/16

3

9

Possible Solution:
Mixed Code and Data

Advantages:
n Code and data are close together
n Conceptually easy to understand
n Minimizes register usage for variables
n Data persists through life of program

Disadvantages:
n Cannot handle recursion or parallel execution
n Code is vulnerable to self-modification
n Consumes resource for inactive functions

9 10

Possible Solution:
Separate Code and Data

Memory allocation:

foo_rv .BLKW 1 # foo return value
foo_ra .BLKW 1 # foo return address
foo_paramx .BLKW 1 # foo ‘x’ parameter
foo_paramy .BLKW 1 # foo ‘y’ parameter
foo_localz .BLKW 1 # foo ‘z’ local
bar_rv .BLKW 1 # bar return value
bar_ra .BLKW 1 # bar return address
bar_paramw .BLKW 1 # bar ‘w’ parameter

Code for foo() and bar() are somewhere else
Function code call is similar to mixed solution

10

11

Possible Solution:
Separate Code and Data

Advantages:
n Code can be marked ‘read only’
n Conceptually easy to understand
n Early Fortran used this scheme
n Data persists through life of program

Disadvantages:
n Cannot handle recursion or parallel execution
n Consumes resource for inactive functions

11

Instructions are stored in code segment
Global data is stored in data segment
Statically allocated memory uses stack
Dynamically allocated memory uses heap

12

Real Solution: Execution Stack

Code
Data
Heap
↓
↑

Stack

n Code segment is write protected
n Initialized and uninitialized globals
n Heap can be fragmented
n Stack size is usually limited
n Stack can grow either direction

(usual convention is down)
12

3/11/16

4

13

Execution Stack
What is a stack?

n First In, Last Out (FILO) data structure
n PUSH adds data, POP removes data
n Overflow condition: push when stack full
n Underflow condition: pop when stack empty
n Stack grows and shrinks as data is added and removed
n Stack grows downward from the end of memory space
n Function calls allocate a stack frame
n Return cleans up by freeing the stack frame
n Corresponds nicely to nested function calls
n Stack Trace shows current execution (Java/Eclipse)

13 14

Stack Trace
Example stack trace from gdb: main() calls A()
calls B() calls C() calls D().
Breakpoint is set in function D(), note that main()
is at the bottom, D() is at the top.

(gdb) info stack
#0 D (a=8, b=9) at stacktest.c:23
#1 0x00400531 in C (a=7, b=8) at stacktest.c:19
#2 0x0040050c in B (a=6, b=7) at stacktest.c:15
#3 0x004004e7 in A (a=5, b=6) at stacktest.c:11
#4 0x00400566 in main () at stacktest.c:29

14

15

Execution Stack

Picture of stack during
program execution, same
call stack as previous slide:
n main() calls A(5,6)
n A(5,6) calls B(6,7)
n B(6,7) calls C(7,8)
n C(7,8) calls D(8,9)

D(8,9)

C(7,8)

B(6,7)

A(5,6)

main()

15 16

Stack Requirements
Consider what has to happen in a function call:
n Caller must allocate space for the return value.
n Caller must pass parameters to the callee.
n Caller must save the return address.
n Caller must transfer control to the callee.
n Callee requires space for local variables.
n Callee must return control to the caller.

Parameters, return value, return address, and
locals are stored on the stack.
The order above determines the responsibility and
order of stack operations.

16

3/11/16

5

Execution Stack

17

Definition: A stack frame or activation record is the
memory required for a function call:

n Stack frame below contains the
function that called this function.

n Stack frame above contains the
functions called from this function.

n Caller allocates return value, pushes
parameters and return address.

n Callee allocates and frees local
variables, stores the return value.

↑

Locals

Return Address

Return Value

Parameters

↓

17 18

Stack Pointers
Clearly we need a variable to store the stack
pointer (SP), LC3 assembly uses R6.
Stack execution is ubiquitous, so hardware has a
stack pointer, sometimes even instructions.
Problem: stack pointer is difficult to use to
access data, since it moves around constantly.
Solution: allocate another variable called a frame
pointer (FP), for stack frame, uses R5.
Where should frame pointer point? Convention
sets it between caller and callee data.

18

Execution Stack

19

Definition: A stack frame or activation record is the
memory required for a function call:

n Locals are accessed by negative
offsets from frame pointer.

n Parameters and return value are
accessed by positive offsets.

n Most offsets are small, this explains
LDR/STR implementation.

n Base register stores pointer, signed
offset accesses both directions.

↑

Locals

Return Address

Frame Pointer

Return Value

Parameters

↓

19 20

Execution Stack
In the previous solutions, the compiler allocated
parameters and locals in fixed memory locations.
Using an execution stack means parameters and
locals are constantly moving around.
The frame pointer solves this problem by using fixed
offsets instead of addresses.
The compiler can generate code using offsets,
without knowing where the stack frame will reside.
Frame pointer needs to be saved and restored
around function calls. How about the stack pointer?

20

3/11/16

6

Nested Calls

21

Definition: A stack frame or activation record is the
memory required for a function call:

n Locals are accessed by negative
offsets from frame pointer.

n Parameters and return value are
accessed by positive offsets.

n Most offsets are small, this explains
LDR/STR implementation.

n Base register stores pointer, signed
offset accesses both directions.

FP(D) D(8,9)

C(7,8)

B(6,7)

A(5,6)

main()

FP(C)

FP(B)

FP(A)

21 22

Execution Stack
Advantages:
n Code can be marked ‘read only’
n Conceptually easy to understand
n Supports recursion and parallel execution
n No resources for inactive functions
n Good data locality, no fragmenting
n Minimizes register usage

Disadvantages:
n More memory than static allocation

22

23

Detailed Example
Assume POP and PUSH code as follows:

MACRO PUSH(reg)
 ADD R6,R6,#-1 ; Decrement SP
 STR reg,R6,#0 ; Store value
END

MACRO POP(reg)
 LDR reg,R6,#0 ; Load value
 ADD R6,R6,#1 ; Increment SP
END

23 24

Detailed Example
Main program to illustrate stack convention:

 .ORIG x3000
MAIN LD R6,STACK ; init stack pointer
 LD R0,OPERAND0 ; load first operand
 PUSH R0 ; PUSH first operand
 LD R1,OPERAND1 ; load second operand
 PUSH R1 ; PUSH second operand
 JSR FUNCTION ; call function
 LDR R0,R6,#0 ; POP return value
 ADD R6,R6,#3 ; unwind stack
 ST R0,RESULT ; store result
 HALT

24

3/11/16

7

25

Detailed Example

Second Operand

First Operand

SP

Stack before JSR instruction

25 26

Detailed Example
Function code to illustrate stack convention:

FUNCTION
 ADD R6,R6,#-1 ; alloc return value
 PUSH R7 ; PUSH return address
 PUSH R5 ; PUSH frame pointer
 ADD R5,R6,#-1 ; FP = SP-1

 ADD R6,R6,#-1 ; alloc local variable
 LDR R2,R5,#4 ; load first operand
 LDR R3,R5,#5 ; load second operand
 ADD R4,R3,R2 ; add operands
 STR R4,R5,#0 ; store local variable

26

27

Detailed Example

Local Variable

Frame Pointer

Return Address

Return Value

Second Operand

First Operand

FP

Stack during body of FUNCTION

FP[0]
FP[1]
FP[2]
FP[3]
FP[4]
FP[5]

27 28

Detailed Example
Function code to illustrate stack convention:

FUNCTION ; stack exit code
 STR R4,R5,#3 ; store return value
 ADD R6,R5,#1 ; SP = FP+1
 POP R5 ; POP frame pointer
 POP R7 ; POP return address
 RET ; return

OPERAND0 .FILL x1234 ; first operand
OPERAND1 .FILL x2345 ; second operand
RESULT .BLKW 1 ; result
STACK .FILL x4000 ; stack address

28

3/11/16

8

29

Stack Execution
Summary of memory model:
n We have discussed the stack model for execution of

C programs, and along the way we have shown how
a compiler might generate code for function calls.

Future programming assignment:
n Write a recursive function in C, then implement the

same function in assembly code, managing memory
using the stack model.

29

