
1

Chapter 10
And, Finally...

The Stack

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Stack: An Abstract Data Type
An important abstraction that you will encounter
in many applications.
The fundamental model for execution of C, Java,
Fortran, and many other languages.
We will describe two uses of the stack:
n  Evaluating arithmetic expressions

•  Store intermediate results on stack instead of in registers
n  Function calls

•  Store parameters, return values, return address, dynamic link

n  Interrupt-Driven I/O
•  Store processor state for currently executing program

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Stacks

A LIFO (last-in first-out) storage structure.
n  The first thing you put in is the last thing you take out.
n  The last thing you put in is the first thing you take out.

This means of access is what defines a stack,
not the specific implementation.
Two main operations:

 PUSH: add an item to the stack
 POP: remove an item from the stack

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

A Physical Stack

Coin rest in the arm of an automobile

First quarter out is the last quarter in.

1995 1996
1998
1982
1995

1998
1982
1995

Initial State After
One Push

After Three
More Pushes

After
One Pop

4

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

A Hardware Implementation

Data items move between registers

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

Yes Empty:

TOP #18
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

No Empty:

TOP #12
#5

#31
#18

/ / / / / /

No Empty:

TOP #31
#18

/ / / / / /
/ / / / / /
/ / / / / /

No Empty:

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

A Software Implementation

Data items don't move in memory,
just our idea about there the TOP of the stack is.

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

TOP

/ / / / / /
/ / / / / /
/ / / / / /

#18 TOP

#12
#5

#31
#18

TOP #12
#5

#31
#18

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x4000 x3FFF x3FFC x3FFE R6 R6 R6 R6

By convention, R6 holds the Top of Stack (TOS) pointer.
6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Basic Push and Pop Code

For our implementation, stack grows downward
(when item added, TOS moves closer to 0)

PUSH
 ADD R6, R6, #-1 ; decrement stack pointer
 STR R0, R6, #0 ; store data (R0) to TOS

POP
 LDR R0, R6, #0 ; load data (RO) from TOS
 ADD R6, R6, #1 ; decrement stack pointer

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Pop with Underflow Detection
If we try to pop too many items off the stack,
an underflow condition occurs.
n  Check for underflow before removing data.
n  Return status code in R5 (0 for success, 1 for underflow)

POP LD R1, EMPTY ; EMPTY = -x4000
 ADD R2, R6, R1 ; Compare stack pointer
 BRz FAIL ; with x3FFF
 LDR R0, R6, #0
 ADD R6, R6, #1
 AND R5, R5, #0 ; SUCCESS: R5 = 0
 RET

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
 ADD R5, R5, #1
 RET

EMPTY .FILL xC000
8

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Push with Overflow Detection
If we try to push too many items onto the stack,
an overflow condition occurs.
n  Check for underflow before adding data.
n  Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1, MAX ; MAX = -x3FFB
 ADD R2, R6, R1 ; Compare stack pointer
 BRz FAIL ; with x3FFF
 ADD R6, R6, #-1
 STR R0, R6, #0
 AND R5, R5, #0 ; SUCCESS: R5 = 0
 RET

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
 ADD R5, R5, #1
 RET

MAX .FILL xC005
9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Arithmetic Using a Stack
Instead of registers, some ISA's use a stack for
source/destination ops (zero-address machine).
n  Example: ADD instruction pops two numbers from the

stack, adds them, and pushes the result to the stack.
Evaluating (A+B)·(C+D) using a stack:

 (1) push A
 (2) push B
 (3) ADD
 (4) push C
 (5) push D
 (6) ADD
 (7) MULTIPLY
 (8) pop Result

Why use a stack?
•  Limited registers.
• Convenient calling convention

for subroutines.
• Algorithm naturally expressed

using FIFO data structure.

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example: OpAdd
POP two values, ADD, then PUSH result.

START

POP POP

OK? OK?

ADD

Range
OK?

PUSH

RETURN

Put back bothPut back first

Yes

No No No

Yes Yes

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example: OpAdd
OpAdd JSR POP ; Get first operand.
 ADD R5,R5,#0 ; Check for POP success.
 BRp Exit ; If error, bail.
 ADD R1,R0,#0 ; Make room for second.
 JSR POP ; Get second operand.
 ADD R5,R5,#0 ; Check for POP success.
 BRp Restore1 ; If err, restore & bail.
 ADD R0,R0,R1 ; Compute sum.
 JSR RangeCheck ; Check size.
 BRp Restore2 ; If err, restore & bail.
 JSR PUSH ; Push sum onto stack.
 RET

Restore2 ADD R6,R6,#-1 ; undo first POP
Restore1 ADD R6,R6,#-1 ; undo second POP
Exit RET

12

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Run-Time Stack
Recall that local variables are stored
on the run-time stack in an activation record
Stack Pointer (R6) is a pointer to the next free
location in the stack, and is used to push and
pop values on and off the stack.
Frame pointer (R5) is a pointer to the beginning
of a region of the activation record that stores
local variables for the current function
When a new function is called, its activation
record is pushed on the stack; when it returns,
its activation record is popped off of the stack.

13 CS 270 - Spring Semester 2016 13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Run-Time Stack

main

Memory

R6

Watt

Memory

R6

main

Memory

main

Before call During call After call

R5

R5

R6
R5

14 CS 270 - Spring Semester 2016 14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

double ValueInDollars(double amount, double rate);
int main()
{

 ...
 dollars = ValueInDollars(francs,
 DOLLARS_PER_FRANC);
 printf("%f francs equals %f dollars.\n",
 francs, dollars);
 ...

}
double ValueInDollars(double amount, double rate)
{
 return amount * rate;
}

Example

function declaration (prototype)
function call (invocation)

function definition (code)

15 CS 270 - Spring Semester 2016 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Implementing Functions: Overview
Activation record (stack frame)
n  information about each function,

including arguments and local variables
n  stored on run-time stack

Calling function

push new activation
 record
copy values into
 arguments
call function

get result from stack

Called function

execute code
put result in
 activation record
pop activation record
 from stack
return

16
CS 270 - Spring Semester

2016 16

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Record
int NoName(int a, int b)
{
 int w, x, y;
 .
 .
 .
 return y;
}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

4
5
0
-1
-2

NoName
NoName
NoName
NoName
NoName

y
x
w

dynamic link
return address

return value
a
b

bookkeeping

locals

args

R5

17 CS 270 - Spring Semester 2016 17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Activation Record Bookkeeping

Return value
n  space for value returned by function
n  allocated even if function does not return a value

Return address
n  save pointer to next instruction in calling function
n  convenient location to store R7 in case another

function (JSR) is called

Dynamic link
n  caller’s frame pointer
n  used to pop this activation record from stack

18 CS 270 - Spring Semester 2016 18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example Function Call
int Volta(int q, int r)
{
 int k;
 int m;
 ...
 return k;
}

int Watt(int a)
{
 int w;
 ...
 w = Volta(w,10);
 ...
 return w;
}

19 CS 270 - Spring Semester 2016 19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Calling the Function

w = Volta(w, 10);
 ; push second arg
 AND R0, R0, #0
 ADD R0, R0, #10
 PUSH R0
 ; push first argument
 LDR R0, R5, #0
 PUSH R0
 ; call subroutine
 JSR Volta

q (param)
r (param)
w (local)
dyn link
ret addr
ret val
a (param)

 25
10
25

x4000

new R6

Note: Caller needs to know number and type of arguments,
doesn’t know about local variables for function being called.

20

old R6

CS 270 - Spring Semester 2016 20

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Starting the Callee Function

; leave space for return value
ADD R6, R6, #-1
; push return address
PUSH R7

 ; push caller’s frame ptr
 PUSH R5
 ; set new frame pointer
 ADD R5, R6, #-1
 ; allocate space for locals
 ADD R6, R6, #-2

m
k
dyn link
ret addr
ret val
q
r
w
dyn link
ret addr
ret val
a

x3FFB
x3100

25
10
25

x4000

new R6
new R5

R6

R5

21 CS 270 - Spring Semester 2016 21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Ending the Callee Function

return k;
 ; copy k into return value
 LDR R0, R5, #0
 STR R0, R5, #3
 ; pop local variables
 ADD R6, R5, #2
 ; pop dynamic link (into R5)
 POP R5
 ; pop return addr (into R7)
 POP R7
 ; return control to caller
 RET

m
k
dyn link
ret addr
ret val
q
r
w
dyn link
ret addr
ret val
a

-43
217

x3FFB
x3100
217
25
10
25

x4000

R6
R5

 new R6

new R5

22 CS 270 - Spring Semester 2016 22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Resuming the Caller Function
w = Volta(w,10);

 JSR Volta
 ; load return value
 ; from top of stack
LDR R0, R6, #0
; perform assignment
STR R0, R5, #0
; pop return value
ADD R6, R6, #1
; pop arguments
ADD R6, R6, #2

ret val
q
r
w
dyn link
ret addr
ret val
a

217
25
10
217

x4000

R6

R5
new R6

23 CS 270 - Spring Semester 2016 23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Summary of LC-3 Function Call
Implementation

1.  Caller pushes arguments (last to first).
2.  Caller invokes subroutine (JSR).
3.  Callee allocates return value, pushes R7 and R5.
4.  Callee allocates space for local variables.
5.  Callee executes function code.
6.  Callee stores result into return value slot.
7.  Callee pops local vars, pops R5, pops R7.
8.  Callee returns (JMP R7).
9.  Caller loads return value and pops arguments.
10.  Caller resumes computation

24 CS 270 - Spring Semester 2016 24

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Exception: Internal Interrupt

When something unexpected happens
inside the processor, it may cause an exception.
Examples:
n  Privileged operation (e.g., RTI in user mode)
n  Executing an illegal opcode
n  Divide by zero
n  Accessing an illegal address (e.g., protected system

memory)
Handled just like an interrupt
n  Vector is determined internally by type of exception
n  Priority is the same as running program

25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Interrupt-Driven I/O (Part 2)
Interrupts were introduced in Chapter 8.
1.  External device signals need to be serviced.
2.  Processor saves state and starts service routine.
3.  When finished, processor restores state and

resumes program.

•  Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack.

•  Now, we’re ready…

Interrupt is an unscripted subroutine call,
triggered by an external event.

26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Processor State
What state is needed to completely capture the
state of a running process?
Processor Status Register
n  Privilege [15], Priority Level [10:8], Condition Codes [2:0]

Program Counter
n  Pointer to next instruction to be executed.

Registers
n  Temporary process state that’s not stored in memory.

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Where to Save Processor State?
Can’t use registers.
n  Programmer doesn’t know when interrupt might occur,

so she can’t prepare by saving critical registers.
n  When resuming, need to restore state exactly as it was.

Memory allocated by service routine?
n  Must save state before invoking routine,

so we wouldn’t know where.
n  Also, interrupts may be nested – that is, an interrupt

service routine might also get interrupted!
Use a stack!
n  Location of stack “hard-wired”.
n  Push state to save, pop to restore.

28

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Supervisor Stack

A special region of memory used as the stack
for interrupt service routines.
n  Initial Supervisor Stack Pointer (SSP) stored in

Saved.SSP.
n  Another register for storing User Stack Pointer (USP):

Saved.USP.
Want to use R6 as stack pointer.
n  So that our PUSH/POP routines still work.

When switching from User mode to Supervisor
mode (as result of interrupt), save R6 to
Saved.USP.

29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Invoking the Service Routine (Details)
1.  If Priv = 1 (user),

Saved.USP = R6, then R6 = Saved.SSP.
2.  Push PSR and PC to Supervisor Stack.
3.  Set PSR[15] = 0 (supervisor mode).
4.  Set PSR[10:8] = priority of interrupt being serviced.
5.  Set PSR[2:0] = 0.
6.  Set MAR = x01vv, where vv = 8-bit interrupt vector

provided by interrupting device (e.g., keyboard = x80).
7.  Load memory location (M[x01vv]) into MDR.
8.  Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Returning from Interrupt
Special instruction – RTI – that restores state.

1.  Pop PC from supervisor stack:

 (PC = M[R6]; R6 = R6 + 1)
2.  Pop PSR from supervisor stack:

 (PSR = M[R6]; R6 = R6 + 1)
3.  If going back to user mode, need to restore User Stack Pointer:
 (if PSR[15] = 1, R6 = Saved.USP)

RTI is a privileged instruction.
n  Can only be executed in Supervisor Mode.
n  If executed in User Mode, causes an exception.

(More about that later.)

31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example (1)

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

x3006 PC

Program A

ADD x3006

Executing ADD at location x3006 when Device B interrupts.

Saved.SSP

32

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example (2)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6200 PC

R6

Program A

ADD x3006

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

x6200

ISR for
Device B

x6210 RTI

33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example (3)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6203 PC

R6

Program A

ADD x3006

Executing AND at x6202 when Device C interrupts.

x6200

ISR for
Device B

AND x6202

x6210 RTI

34

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example (4)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6300 PC

R6

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

x6300

x6315 RTI

x6210 RTI

35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example (5)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6203 PC

R6

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Execute RTI at x6315; pop PC and PSR from stack.

x6300

x6315 RTI

x6210 RTI

36

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Spring Semester 2016

Example (6)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x3007 PC

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

x6300

x6315 RTI

x6210 RTI

Saved.SSP

37

