Chapter 10
And, Finally...
The Stack

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright© . Inc P or display.

Stack: An Abstract Data Type

@ An important abstraction that you will encounter
in many applications.

@ The fundamental model for execution of C, Java,
Fortran, and many other languages.
@ We will describe two uses of the stack:
« Evaluating arithmetic expressions
- Store intermediate results on stack instead of in registers
= Function calls
« Store parameters, return values, return address, dynamic link

s Interrupt-Driven I/O
« Store processor state for currently executing program

CS 270 - Spring Semester 2016

Copyright ® Companies, Inc. producton or display.

Stacks

@ A LIFO (last-in first-out) storage structure.

= The first thing you put in is the last thing you take out.
= The last thing you put in is the first thing you take out.

@ This means of access is what defines a stack,
not the specific implementation.

@ Two main operations:

PUSH: add an item to the stack
POP: remove an item from the stack

CS 270 - Spring Semester 2016

Copyright © e P or display.

A Physical Stack

@ Coin rest in the arm of an automobile

MY

NN\

Initial State After After Three After
One Push More Pushes One Pop

CS 270 - Spring Semester 2016 4

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

A Hardware Implementation

@ Data items move between registers

Empty: Empty: Empty: Empty:
[111]] |+ TOP #18 |+ TOP #12 |+<TOP #31 ~—ToP
111117 111111 #5 #18
111111 111111 #31 111111
111111 111111 #18 11111
111111 111111 111111 111111

Initial State After After Three After
One Push More Pushes Two Pops
CS 270 - Spring Semester 2016 5

Copyright & . Inc P or display.

A Software Implementation

@ Data items don't move in memory,
just our idea about there the TOP of the stack is.

1111117 111117 #12 |+<TOP #12

111111 111117 #5 #5

111117 111117 #31 #31 |+ TOP

1111 #18 |« TOP #18 #18

«~TOP

[x4000 |R6 [x3FFF |R6 [x3FFC |Ré [x3FFE |Re

Initial State After After Three After
One Push More Pushes Two Pops

By convention, R6 holds the Top of Stack (TOS) pointer.

CS 270 - Spring Semester 2016 6

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Basic Push and Pop Code

@ For our implementation, stack grows downward
(when item added, TOS moves closer to 0)

PUSH

ADD R6, R6, #-1 ; decrement stack pointer
STR RO, R6, #0 ; store data (RO) to TOS

POP

LDR RO, R6, #0 ; load data (RO) from TOS
ADD R6, R6, #1 ; decrement stack pointer

CS 270 - Spring Semester 2016 7

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Pop with Underflow Detection
o If we try to pop too many items off the stack,
an underflow condition occurs.
= Check for underflow before removing data.
= Return status code in R5 (0 for success, 1 for underflow)

POP LD R1, EMPTY ; EMPTY = -x4000
ADD R2, R6, Rl ; Compare stack pointer
BRz FAIL ; with x3FFF
LDR RO, R6, #0
ADD R6, R6, #1
AND R5, R5, #0 ; SUCCESS: R5 = 0

FAIL AND R5, R5, #0 ; FAIL: R5 = 1
ADD R5, R5, #1

EMPTY .FILL xCO000

CS 270 - Spring Semester 2016 8

Copyright© Companies, Inc. Permission red P o

Push with Overflow Detection
@ If we try to push too many items onto the stack,
an overflow condition occurs.
= Check for underflow before adding data.
= Return status code in R5 (0 for success, 1 for overflow)

PUSH LD R1, MAX ; MAX = -x3FFB
ADD R2, R6, Rl ; Compare stack pointer
BRz FAIL ; with x3FFF
ADD R6, R6, #-1
STR RO, R6, #0
AND R5, R5, #0 ; SUCCESS: RS = 0

FAIL AND R5, R5, #0 ; FAIL: RS = 1
ADD R5, R5, #1

MAX .FILL xCO005

CS 270 - Spring Semester 2016 9

Copyright & . Inc P or display.

Arithmetic Using a Stack
@ Instead of registers, some ISA's use a stack for
source/destination ops (zero-address machine).

= Example: ADD instruction pops two numbers from the
stack, adds them, and pushes the result to the stack.

Evaluating (A+B)-(C+D) using a stack:

(1) push A
(2) push B 7
(3) ADD WhLy use a stack?
« Limited registers.
g; Eu:: g « Convenient calling convention
u for subroutines.
(6) ADD « Algorithm naturally expressed
(7) MULTIPLY using FIFO data structure.
(8) pop Result

CS 270 - Spring Semester 2016 10

Copyright ® Companies, Inc. Permission req

Example: OpAdd
@ POP two values, ADD, then PUSH result.

START

‘ POP ‘ ‘ POP ‘
No No
Put back first ‘ Put back both ‘ PUSH ‘

RETURN

CS 270 - Spring Semester 2016 1

Copyright © e production or display.

Example: OpAdd

Get first operand.
Check for POP success.

OpAdd JSR POP
ADD R5,R5,#0

BRp Exit If error, bail.
ADD R1,RO,#0 Make room for second.
JSR POP Get second operand.

ADD R5,R5,#0
BRp Restorel
ADD RO,RO,R1
JSR RangeCheck
BRp Restore2
JSR PUSH

RET

Check for POP success.
If err, restore & bail.
Compute sum.

Check size.

If err, restore & bail.
Push sum onto stack.

e Se |, e We W we we e e e

Restore2 ADD R6,R6,#-1 ; unde first POP
Restorel ADD R6,R6,#-1 ; undo second POP
Exit RET

CS 270 - Spring Semester 2016 12

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Run-Time Stack

@ Recall that local variables are stored
on the run-time stack in an activation record

Copyright & . Inc P or display.

Run-Time Stack

Memory Memory Memory
@ Stack Pointer (R6) is a pointer to the next free
location in the stack, and is used to push and I
pop values on and off the stack. = == gg
o Frame pointer (R5) is a pointer to the beginning T et T
: - L Rre — T
of a region of the activation record that stores BVt Emme [l
local variables for the current function [rain — i— [rain —
@ When a new function is called, its activation
record is pushed on the stack; when it returns, Before call During call After call
its activation record is popped off of the stack.
Example Implementing Functions: Overview

double ValueInDollars (double amount, double rate) ;
int main() function declaration (prototype)
{ -« function call (invocation)

dollars = ValuelInDollars (francs,
DOLLARS_PER FRANC) ;
printf ("$f francs equals %f dollars.\n",
francs, dollars);

) | function definition (code)‘

double ValueInDollars (double amount, double rate)
{

return amount * rate;

CS 270 - Spring Semester 2016 15

@ Activation record (stack frame)
= information about each function,
including arguments and local variables
= stored on run-time stack
Calling function

push new activation Called function
record ;

copy values into wexecute code
arguments —] put result in

call function — activation record

pop activation record

get result from stack———___| from stack

return

CS 270 - Spring Semester
2016

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Activation Record
Q@ int NoName (int a, int b)

{
int w, x, y; >
X locals
R5 —j w
o dynamic link
return y; bookkeeping return address
} return value
a args
Name | Type Offset | Scope b
a int 4 NoName
b int 5 NoName
w int 0 NoName
X int =il NoName
y int -2 NoName
CS 270 - Spring Semester 2016 17

Copyright & . Inc P or display.

Activation Record Bookkeeping

o Return value
= space for value returned by function
= allocated even if function does not return a value
o Return address
= save pointer to next instruction in calling function
= convenient location to store R7 in case another
function (JSR) is called
o Dynamic link
= caller’s frame pointer
= used to pop this activation record from stack

CS 270 - Spring Semester 2016 18

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Example Function Call
@ int Volta(int q, int r)
{
int k;
int m;
J.Cé;:urn k;
}

int Watt(int a)
{

int w;
w = Volta(w,10) ;
return w;

}

CS 270 - Spring Semester 2016 19

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Calling the Function

Qw = Volta(w, 10);

; push second arg]W\

AND RO, RO, #0

ADD RO, RO, #10 - 5 q (param)
PUSH RO 10 r (param)
; push first arg 25 w (local)
LDR RO, RS S Lt
PUSH RO ret addr
i ret val
; call subroutine a (param)
JSR Volta G
Note: Caller needs to know number and type of arguments,
doesn’t know about local variables for function being called.
CS 270 - Spring Semester 2016 20

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Starting the Callee Function

® ; leave space for return value

Q@ return k;

Copyright & e P or display.

Ending the Callee Function

; pop arguments %4000

ADD R6, R6, #2

Callee returns (JMP R7).

Caller loads return value and pops arguments.

_ R6—]
ADD R6, R6, #-1 :Za Rg_ E ; copy k into return value Re—| _;3 |m
; push return addres — oo |k it ILDR RO, R5, #0 RE—| 517 K
PUSH R7 3100 |retaddr STR RO, R5, #3 x3FFB | dyn link
; push caller’s e ptr ret val ; pop local variables %3100 | retaddr
PUSH R5 R6— 25 q ADD Rg, R5., #2 — ;etval
. 10 r ; pop dynam
; set new frame pointer R5 —| o5 w POP R5 10 r
ADD R5, R6, #-1 dyn link ; pop ret 25 L
; allocate s £ 1 1 ret addr G [l
; pace for locals POP R7 EhenD
ADD R6, R6, #-2 ;etval ; return control to caller vl
RET a
x4000
%4000
CS 270 - Spring Semester 2016 21 CS 270 - Spring Semester 2016 22
. . Summary of LC-3 Function Call
Resuming the Caller Function Implementation
I+ = . .
ws Voi:a Lo 1. Caller pushes arguments (last to first).
JSR Volta) .
. load return value 2. Callerinvokes subroutine (JSR).
! RE— 217 ret val
. Chaem fEgs o SM e q 3. Callee allocates return value, pushgs R7 and R5.
LDR RO, R6, #0 new R6 0 |r 4. Callee allocates space for local variables.
; perform assigM 217 ‘évyn link 5. Callee executes function code.
STR RO, R5, #0 .
. r RS, # ret addr 6. Callee stores result into return value slot.
; pop return value ret val
ADD R6, R6, #1 g 7. Callee pops local vars, pops R5, pops R7.
8.
9.
1

CS 270 - Spring Semester 2016

23

0. Caller resumes computation

CS 270 - Spring Semester 2016

24

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Exception: Internal Interrupt

@ When something unexpected happens

inside the processor, it may cause an exception.
@ Examples:

= Privileged operation (e.g., RTl in user mode)

= Executing an illegal opcode

= Divide by zero

= Accessing an illegal address (e.g., protected system

memory)

@ Handled just like an interrupt

= Vector is determined internally by type of exception

= Priority is the same as running program
CS 270 - Spring Semester 2016 25

Copyright & e P or display.

Interrupt-Driven 1/O (Part 2)
@ Interrupts were introduced in Chapter 8.
1. External device signals need to be serviced.
> Processor saves state and starts service routine.

s. When finished, processor restores state and
resumes program.

Interrupt is an unscripted subroutine call,
triggered by an external event.

- Chapter 8 didn’ t explain how (2) and (3) occur,

because it involves a stack.

* Now, we’ re ready...

CS 270 - Spring Semester 2016 26

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Processor State
@ What state is needed to completely capture the
state of a running process?

9 Processor Status Register
= Privilege [15], Priority Level [10:8], Condition Codes [2:0]

15 14 13 12 11 10 9 8 7 6 5 4

3 2 1
p| PL Injz| P

)

o Program Counter
= Pointer to next instruction to be executed.
9 Registers
= Temporary process state that’ s not stored in memory.

CS 270 - Spring Semester 2016 27

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Where to Save Processor State?

@ Can’ t use registers.

= Programmer doesn’ t know when interrupt might occur,
so she can’ t prepare by saving critical registers.
=« When resuming, need to restore state exactly as it was.

@ Memory allocated by service routine?

= Must save state before invoking routine,
so we wouldn’ t know where.

= Also, interrupts may be nested — that is, an interrupt
service routine might also get interrupted!
9 Use a stack!
= Location of stack “hard-wired”.
= Push state to save, pop to restore.

CS 270 - Spring Semester 2016 28

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Supervisor Stack

@ A special region of memory used as the stack
for interrupt service routines.

= Initial Supervisor Stack Pointer (SSP) stored in
Saved.SSP.

= Another register for storing User Stack Pointer (USP):
Saved.USP.
@ Want to use R6 as stack pointer.
= So that our PUSH/POP routines still work.
@ When switching from User mode to Supervisor
mode (as result of interrupt), save R6 to
Saved.USP.

CS 270 - Spring Semester 2016 29

Copyright & e P or display.

Invoking the Service Routine (Details)
1. If Priv =1 (user),
Saved.USP = R6, then R6 = Saved.SSP.
Push PSR and PC to Supervisor Stack.
Set PSR[15] = 0 (supervisor mode).
Set PSR[10:8] = priority of interrupt being serviced.
Set PSR[2:0] = 0.
Set MAR = x01vv, where vy = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).
Load memory location (M[x01vv]) into MDR.
8. Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

CS 270 - Spring Semester 2016 30

(S S

N

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Returning from Interrupt

@ Special instruction — RTI — that restores state.
15 14 13 12 11 10 9 8 7 6 5

4 3 2 1 0
RTI 1 000000000000O00O00O
1. Pop PC from supervisor stack:
(PC = M[R6]; R6 = R6 + 1)
2. Pop PSR from supervisor stack:
(PSR = M[R6]; R6 =R6 + 1)
3. If going back to user mode, need to restore User Stack Pointer:
(if PSR[15] = 1, R6 = Saved.USP)

@ RTlis a privileged instruction.
= Can only be executed in Supervisor Mode.

= If executed in User Mode, causes an exception.
(More about that later.)

CS 270 - Spring Semester 2016 31

‘Gopyright © The McGraw:Hil Companies, Inc. Permission required for reproduction o display.

Example (1)

Program A

Saved.SSP

[
11
[
1
11

pc x3006 |

x3006| ADD

Executing ADD at location x3006 when Device B interrupts.

CS 270 - Spring Semester 2016 32

Copyright © The McGraw-Hil Companies,Inc. Permission required for reproducton or display.

Example (2)

Program A ISR for
Device B
Xx6200+>

111 joé
111 3006/ ADD —

R6—| x3007
PSR for A 6210 RTT
1

PC

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

CS 270 - Spring Semester 2016

33

Copyright & . Inc P or display.

Example (3)

Program A ISR for
Device B
x62001>

1111171

6202| AND

111171 43006 2DD —

R6—| x3007

PSR for A <6210 RTT
1111
PC| x6203

Executing AND at x6202 when Device C interrupts.

CS 270 - Spring Semester 2016 34

Copyright @ The McGraw-Hil Companies,Inc. Permission required forreproducton or display.

Example (4)

Program A ISR for
Device B
x62001>
R6—| x6203
6202| AND -~
PSR for B
y | 200 — ISR for
x3007 Device C
RSO 6210 RTT Xx6300 >
111111
PC
x6315[RT L

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

CS 270 - Spring Semester 2016

35

Copyright © Inc. production or display.

Example (5)

Program A ISR for
Device B
x6200T>
Xx6203
6202| AND —
PSR for B «3006| ADD. — R
R6—| x3007 \ o
Device C
PSR for A <6210 RTT 6300~
111111
PC
6315 RTI
Execute RTI at x6315; pop PC and PSR from stack.
CS 270 - Spring Semester 2016 36

Copyright© Companies, Inc. Permission req P o

Example (6)

Program A ISR for
Saved.SSP Device B
x62001>
x6203
6202| AND —

PSR for B 3006/ ADD — \ SR for

x3007 A Device C
PSR for A B RTT 6300~
1

PC| x3007
x6315| RTL

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

CS 270 - Spring Semester 2016

37

10

