

Combinational vs. Sequential

- Combinational Circuit
- does not store information, always gives the same output for a given set of inputs - example: adder always generates sum and carry, regardless of previous inputs

- Sequential Circuit

- stores information, output depends on stored info (state) plus input
- so a given input might produce different outputs, depending on the stored information
- useful for building "memory" elements and "state machines"
- example: ticket counter

R-S Latch: Simple Storage Element

- R is used to "reset" or "clear" the element - set it to zero.
- S is used to "set" the element - set it to one,

- If both R and S are one, output could be either zero or one.
- "quiescent" state -- holds its previous value
- if a is $1, b$ is 0 , and vice versa

Representing Multi-bit Values

- Number bits from right (0) to left ($\mathrm{n}-1$)
- just a convention -- could be left to right, but must be consistent
- Use brackets to denote range:

D[I:r] denotes bit I to bit \mathbf{r}, from left to right

$$
A=0101001101010101
$$

$$
A[14: 9]=101001
$$

$$
A[2: 0]=101
$$

- May also see $A<14: 9>$,
especially in hardware block diagrams.

More Memory Details

- Not the way actual memory is implemented! - fewer transistors, denser, relies on electrical properties
- But the logical structure is very similar.
- address decoder, word select line, word write enable
- Random Access Memory: 2 different types - Static RAM (SRAM)
- fast, used for caches, maintains data when powered
- Dynamic RAM (DRAM)
- slower but denser, storage decays, must be refreshed
- Non-Volatile Memory: ROM, PROM, Flash

Memory Bandwidth

- Bandwidth is the rate at which memory can be read or written by the processor.
- Approximately equal to the memory bus size times the speed at which the memory is clocked.
- Examples of bandwidth (from Wikipedia):
- Phone line, Modem, up to $5.6 \mathrm{~KB} / \mathrm{s}$
- Digital subscriber line, ADSL, up to $128 \mathrm{~KB} / \mathrm{s}$
- Wireless networking, 802.11 g , up to $17.5 \mathrm{MB} / \mathrm{s}$
- Peripheral connection, USB $2.0,60 \mathrm{MB} / \mathrm{s}$
- Digital video, HDMI, up to $1.275 \mathrm{~GB} / \mathrm{s}$
- Computer bus, PCI Express, up to 25.6GB/s
- Memory chips, SDRAM, up to 52GB/s
- Similar to Java arrays
// integer array
int inarray [3] $=\{1,2,3\}$;
printff("iazrey[2]: कीd", idrray[2]):
/| Rloat array

// charaeter array
char atrray[4] =(1 $\left.a^{\prime}, b^{\prime},{ }^{\prime} c^{\prime}, d^{\prime}\right):$ printef("carray[3]: \%c", oarray [3]):

LookingAhead: C Strings

- Array of chars with null (not NULL) termination // string: static allocation char "Btringl $=$ "Mello WorldVa": printef("stringl: fis", stringl) ;
// stiring: dynamie alloeaten char (betring2 $=$ mal 100 (13):

Note that the programmer is responsible for making sure string has enough memory!

LookingAhead: C Functions

- Can pass by value or reference
// by value (oopies value)
float filint i, float fi):
// by reference (oopies pointer)
float fe (float (if)) :
- Function cannot change values passed by value

It: $1=10 \mathrm{t} / /$ changes the eopy

- Function can change values passed by reference
t2: $\mathrm{w}_{2}=1.2 ; / /$ changes actual value CS270-Sping Semester $2016 \quad 18$

