
1

Chapter 3
Digital Logic
Structures

Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

22CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Computing LayersComputing Layers
Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

33CS270 - Spring Semester 2016CS270 - Spring Semester 2016

State MachineState Machine
Another type of sequential circuit
n Combines combinational logic with storage
n “Remembers” state, and changes output (and state)

based on inputs and current state

Another type of sequential circuit
n Combines combinational logic with storage
n “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

44CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Combinational vs. SequentialCombinational vs. Sequential

Two types of “combination” locksTwo types of “combination” locks

4 1 8 4
30

15

5

1020

25

Combinational
Success depends only on
the values, not the order in
which they are set.

Sequential
Success depends on
the sequence of values
(e.g, R-13, L-22, R-3).

2

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

55CS270 - Spring Semester 2016CS270 - Spring Semester 2016

StateState

The state of a system is a snapshot of all the
relevant elements of the system at the moment
the snapshot is taken.
Examples:
n The state of a basketball game can be represented by

the scoreboard: number of points, time remaining,
possession, etc.

n The state of a tic-tac-toe game can be represented by
the placement of X’s and O’s on the board.

The state of a system is a snapshot of all the
relevant elements of the system at the moment
the snapshot is taken.
Examples:
n The state of a basketball game can be represented by

the scoreboard: number of points, time remaining,
possession, etc.

n The state of a tic-tac-toe game can be represented by
the placement of X’s and O’s on the board.

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

66CS270 - Spring Semester 2016CS270 - Spring Semester 2016

State of Sequential LockState of Sequential Lock

Our lock example has four different states,
labelled A-D:
A: The lock is not open, and no relevant
operations have been performed.
B: The lock is not open, and the user has
completed the R-13 operation.
C: The lock is not open, and the user has
completed R-13, followed by L-22.
D: The lock is open.

Our lock example has four different states,
labelled A-D:
A: The lock is not open, and no relevant
operations have been performed.
B: The lock is not open, and the user has
completed the R-13 operation.
C: The lock is not open, and the user has
completed R-13, followed by L-22.
D: The lock is open.

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

77CS270 - Spring Semester 2016CS270 - Spring Semester 2016

State DiagramState Diagram
Shows states and actions that cause a transition
between states.
Shows states and actions that cause a transition
between states.

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

88CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Finite State MachineFinite State Machine
A system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each

external output value
Often described by a state diagram.
n Inputs trigger state transitions.
n Outputs are associated with each state (or with each

transition).

A system with the following components:
1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each

external output value
Often described by a state diagram.
n Inputs trigger state transitions.
n Outputs are associated with each state (or with each

transition).

3

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

99CS270 - Spring Semester 2016CS270 - Spring Semester 2016

The ClockThe Clock
Frequently, a clock circuit triggers transition from
one state to the next.

At the beginning of each clock cycle,
state machine makes a transition,
based on the current state and the external
inputs.
n Not always required. In lock example, the input itself

triggers a transition.

Frequently, a clock circuit triggers transition from
one state to the next.

At the beginning of each clock cycle,
state machine makes a transition,
based on the current state and the external
inputs.
n Not always required. In lock example, the input itself

triggers a transition.

“1”

“0”

time→One
Cycle

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1010CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Implementing a Finite State MachineImplementing a Finite State Machine
Combinational logic
n Determine outputs and next state.

Storage elements
n Maintain state representation.

Combinational logic
n Determine outputs and next state.

Storage elements
n Maintain state representation.

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Clock

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1111CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Storage: Master-Slave FlipflopStorage: Master-Slave Flipflop
A pair of gated D-latches,
to isolate next state from current state.
A pair of gated D-latches,
to isolate next state from current state.

During 1st phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1212CS270 - Spring Semester 2016CS270 - Spring Semester 2016

StorageStorage

Each master-slave flipflop stores one state bit.
The number of storage elements (flipflops)
needed is determined by the number of states
(and the representation of each state).
Examples:
n Sequential lock

Four states – two bits
n Basketball scoreboard

7 bits for each score, 5 bits for minutes, 6 bits for
seconds,1 bit for possession arrow, 1 bit for half, …

Each master-slave flipflop stores one state bit.
The number of storage elements (flipflops)
needed is determined by the number of states
(and the representation of each state).
Examples:
n Sequential lock

Four states – two bits
n Basketball scoreboard

7 bits for each score, 5 bits for minutes, 6 bits for
seconds,1 bit for possession arrow, 1 bit for half, …

4

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1313CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Complete ExampleComplete Example

A blinking traffic sign
n No lights on
n 1 & 2 on
n 1, 2, 3, & 4 on
n 1, 2, 3, 4, & 5 on
n (repeat as long as switch

is turned on)

A blinking traffic sign
n No lights on
n 1 & 2 on
n 1, 2, 3, & 4 on
n 1, 2, 3, 4, & 5 on
n (repeat as long as switch

is turned on)

DANGER
MOVE
RIGHT

1

2

3
4

5

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1414CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Traffic Sign State DiagramTraffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1515CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Traffic Sign Truth TablesTraffic Sign Truth Tables
Outputs

(depend only on state: S1S0)

S1S1 S0S0 ZZ YY XX
00 00 00 00 00
00 11 11 00 00
11 00 11 11 00
11 11 11 11 11

Lights 1 and 2
Lights 3 and 4
Light 5

Next State: S1′ S0′
(depend on state and input)

InIn S1S1 S0S0 S1S1′ S0S0′

00 XX XX 00 00
11 00 00 00 11
11 00 11 11 00
11 11 00 11 11
11 11 11 00 00

Switch

Whenever In=0, next state is 00.

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1616CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Traffic Sign LogicTraffic Sign Logic

Master-slave
flipflop

5

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1717CS270 - Spring Semester 2016CS270 - Spring Semester 2016

From Logic to Data PathFrom Logic to Data Path

The data path of a computer is all the logic used
to process information.
n See the data path of the LC-3 on next slide.

Combinational Logic
n Decoders -- convert instructions into control signals
n Multiplexers -- select inputs and outputs
n ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic
n State machine -- coordinate control signals and data

movement
n Registers and latches -- storage elements

The data path of a computer is all the logic used
to process information.
n See the data path of the LC-3 on next slide.

Combinational Logic
n Decoders -- convert instructions into control signals
n Multiplexers -- select inputs and outputs
n ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic
n State machine -- coordinate control signals and data

movement
n Registers and latches -- storage elements

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1818CS270 - Spring Semester 2016CS270 - Spring Semester 2016

LC-3 Data PathLC-3 Data Path
Combinational

Logic

State Machine

Storage

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

1919CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: C ArraysLooking Ahead: C Arrays

Array name can be used (and passed) as a pointer
// static allocation for array
int iArray[2] = {1234, 5678};

printf("iArray[0]: %d", iArray[0]);
printf("iArray[1]: %d", iArray[1]);
printf("&iArray[0]: %p", &iArray[0]);
printf("&iArray[1]: %p", &iArray[1]);
printf("iArray: %p", iArray);

Array name can be used (and passed) as a pointer
// static allocation for array
int iArray[2] = {1234, 5678};

printf("iArray[0]: %d", iArray[0]);
printf("iArray[1]: %d", iArray[1]);
printf("&iArray[0]: %p", &iArray[0]);
printf("&iArray[1]: %p", &iArray[1]);
printf("iArray: %p", iArray);

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2020CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: C PointersLooking Ahead: C Pointers

Pointers can be used for array access
// dynamic allocation for array
int *iArray = malloc(2*sizeof(int));
iArray[0] = 1234; iArray[1] = 5678;
printf("iArray[0]: %d", iArray[0]);
printf("iArray[1]: %d", iArray[1]);
printf("&iArray[0]: %p", &iArray[0]);
printf("&iArray[1]: %p", &iArray[1]);
printf("iArray: %p", iArray);

Pointers can be used for array access
// dynamic allocation for array
int *iArray = malloc(2*sizeof(int));
iArray[0] = 1234; iArray[1] = 5678;
printf("iArray[0]: %d", iArray[0]);
printf("iArray[1]: %d", iArray[1]);
printf("&iArray[0]: %p", &iArray[0]);
printf("&iArray[1]: %p", &iArray[1]);
printf("iArray: %p", iArray);

6

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2121CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: C StructuresLooking Ahead: C Structures

Structures
struct Student {
char firstName[80];
char lastName[80];
int testScores[2];
char letterGrade;

};
struct Student student;
struct Student students[10];

Structures
struct Student {
char firstName[80];
char lastName[80];
int testScores[2];
char letterGrade;

};
struct Student student;
struct Student students[10];

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2222CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: C StructuresLooking Ahead: C Structures

Structures
typedef struct _Student {
char firstName[80];
char lastName[80];
int testScores[2];
char letterGrade;

} Student;
Student student;
Student students[10];

Structures
typedef struct _Student {
char firstName[80];
char lastName[80];
int testScores[2];
char letterGrade;

} Student;
Student student;
Student students[10];

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2323CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: C StructuresLooking Ahead: C Structures

Structures
typedef struct {
char firstName[80];
char lastName[80];
int testScores[2];
char letterGrade;

} Student;
Student student;
Student students[10];

Structures
typedef struct {
char firstName[80];
char lastName[80];
int testScores[2];
char letterGrade;

} Student;
Student student;
Student students[10];

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2424CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: C StructuresLooking Ahead: C Structures

Accessing structures
void func(Student student)
{

strcpy(student.firstName, "John");
student.letterGrade = 'A';

void func(Student *student)
{

strcpy(student->firstName, "John");
student->letterGrade = 'A';

Accessing structures
void func(Student student)
{

strcpy(student.firstName, "John");
student.letterGrade = 'A';

void func(Student *student)
{

strcpy(student->firstName, "John");
student->letterGrade = 'A';

7

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2525CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: MakefilesLooking Ahead: Makefiles

File list and compiler flags
C_SRCS = main.c example.c
C_OBJS = main.o example.o
C_HEADERS = example.h
EXE = example

CC = c11
CC_FLAGS = -g –Wall –c
LD_FLAGS = -g –Wall

File list and compiler flags
C_SRCS = main.c example.c
C_OBJS = main.o example.o
C_HEADERS = example.h
EXE = example

CC = c11
CC_FLAGS = -g –Wall –c
LD_FLAGS = -g –Wall

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2626CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: MakefilesLooking Ahead: Makefiles

File dependencies
Compile .c source to .o objects
.c.o:

@echo "Compiling C source files"
$(CC) $(CC_FLAGS) $<

Make .c files depend on .h files
${C_OBJS}: ${C_HEADERS}

File dependencies
Compile .c source to .o objects
.c.o:

@echo "Compiling C source files"
$(CC) $(CC_FLAGS) $<

Make .c files depend on .h files
${C_OBJS}: ${C_HEADERS}

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2727CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: MakefilesLooking Ahead: Makefiles

Build target (default)
Target is the executable
default: $(C_OBJS)

@echo "Linking object modules"
$(CC) $(LD_FLAGS) $(C_OBJS) –o $(EXE)

Build target (default)
Target is the executable
default: $(C_OBJS)

@echo "Linking object modules"
$(CC) $(LD_FLAGS) $(C_OBJS) –o $(EXE)

Copy right © The Mc Graw-Hil l Companies, Inc. Permission required for reproduction or d is play.

2828CS270 - Spring Semester 2016CS270 - Spring Semester 2016

Looking Ahead: MakefilesLooking Ahead: Makefiles

Miscellaneous targets
Clean up the directory
clean:

@echo "Cleaning up project directory"
rm –f *.o *~ $(EXE)

Package up the directory
package:

@echo "Cleaning up project directory"
tar cvf example.tar ../example

Miscellaneous targets
Clean up the directory
clean:

@echo "Cleaning up project directory"
rm –f *.o *~ $(EXE)

Package up the directory
package:

@echo "Cleaning up project directory"
tar cvf example.tar ../example

