Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University
Modified slides by Chris Wilcox,
Colorado State University

Copyright

Computing Layers

Problems

Devices

CS270 - Spring Semester 2016

Copyright T}

State Machine

@ Another type of sequential circuit
= Combines combinational logic with storage
= “Remembers” state, and changes output (and state)
based on ingulls and eurrent stale

State Machine

Inputs Outputs

Combinational

Logic Circuit
Storage

Elements

CS270 - Spring Semester 2016

Copyright

Combinational vs. Sequential

@ Two types of “combination” locks

30
25 5
41184 0@10

15

Combinational Sequential

Success depends only on Success depends on
the values, not the order in the sequence of values
which they are set. (e.g, R-13, L-22, R-3).

CS270 - Spring Semester 2016

Copyright €T}

State

o The staia of a systemis a snapshot of all the
relevant elements of the system at the moment
the snapshot is taken.

Examples:

= The state of a basketball game can be represented by
the scoreboard: number of points, time remaining,
possession, etc.

= The state of a tic-tac-toe game can be represented by
the placement of X’ s and O’s on the board.

CS270-Spring Semester 2016

Copyright T}

State of Sequential Lock

Our lock example has four different states,
labelled A-D:

A: The lock is not open, and no relevant
operations have been performed.

&: The lock is pgt @pen. and the user has
completed the R=48 operation.

€: The lock is pgt @pen, and the user has
completed R=18, followed by L=22.

Dz The lock is gpen-

CS270-Spring Semester 2016

Copyright T}

State Diagram

@ Shows gtates and agtions that cause a transitien
between states.

CS270 - Spring Semester 2016

Copyright ©TheMs Graw-HIIC:

Finite State Machine

A systemwith the following components:
. Afinite number of gtates

. Afinite number of external jnputs

. Afinite number of external gutputs

. An explicit specification of all gtate transitions

. An explicit specification of what determines each
external gutput value

o Often described by a state diagram.

= Inputs trigger state transitions.

= Outputs are associated with each state (or with each
transition).

a b~ WON = @

CS270 - Spring Semester 2016

Copyright €T}

The Clock

Copyright T}

Implementinga Finite State Machine

o Frequently, a clock circuit triggers transition from o Combinational logic
one state to the next. = Determine outputs and next state.
- 1 L1 i @ Swroh Sy
Y = Maintain state representation.
One
Cycle State Machine
@ At the beginning of each clock cycle,
state machine makes a transition, Inputs c;ombirgﬁmtd Outputs
based on the current state and the external Logic Girow
inputs.
. R Storage
= Not always required. Inlock exanple, the input itself Clock Elements
triggers a transition.
CS270 - Spring Semester 2016 9 CS270 - Spring Semester 2016 10
Storage: Master-Slave Flipflop Storage

@ A pair of gated D-latches,
to isolate next state from current state.

T From

— Combinational
Combinational __: Logic Gircui
Logic Circuit ogic Circuit

Latch B Latch A

Clock >

During 1st phase (clock=1), During 2d phase (clock=0),
previously-computed state next state, computed by
becomes current state and is | |logic circuit, is stored in
sent to the logic circuit. Latch A.

CS270-Spring Semester 2016 1

@ Each master-slave flipflop stores one state bit.

@ The number of storage elements (flipflops)
needed is determined by the number of states
(and the representation of each state).

@ Examples:
= Sequential lock
o Four states — two bits
= Basketball scoreboard
o7 bits for each score, 5 bits for minutes, 6 bits for
seconds, 1 bit for possession arrow, 1 bit for half; ...

CS270-Spring Semester 2016 12

Copyright €T}

Complete Example

@ A blinking traffic sign
= Nolights on
« 1&20n
= 1,23 &4on
= 1,23 4,&50n
= (repeatas long as switch

DANGER

MOVE
RIGHT

Copyright T}

Traffic Sign State Diagram

1 <—|Switch on |

is turned on)
Transition on each clock cycle.
CS270 - Spring Semester 2016 13 CS270 - Spring Semester 2016 14
Traffic Sign Truth Tables Traffic Sign Logic
Outputs Next State: S;" Sp’ In - Z
(depend only on state: S1Sy) (depend on state and input)
ights 1 and2 r- ﬁ >—Y
ights 3 and4 H
| In S1 So 81' So' X
0 X X|[0 0 i S,
1 0 0|0 1
1 0 1)1 o0 Sy
1 1 0|1 1 S, Storage Element 0 Master-slave
1 1 1]0 0 IS fipfiop
S, Storage Element 1

CS270-Spring Semester 2016 15

CS270 - Spring Semester 2016

Copyright €T}

From Logicto Data Path

@ The data path of a computer is all the logic used
to process information.

= See the data path of the LC-3 on next slide.
o Combinational Logic
= Decoders -- convert instructions into control signals
= Multiplexers -- select inputs and outputs
= ALU (Arithmetic and Logic Unit) -- operations on data

o Sequential Logic

Copyright T}

LC-3 Data Path

Combinationa
Logic

Storage

k . . State Machine
= State machine -- coordinate control signals and data
movement rﬂ o |
= Registers and latches -- storage elements
CS270-Spring Semester 2016 17 CSWO-SmngSm(HM;BTg 3 18

Copyright T}

LookingAhead: C Arrays

@ Array name can be used (and passed) as a pointer

// static allocation for array
int iArray([2]) = {1234, 5678};

printf ("iArray([0]): %d", iArray[0]);
printf (“iAeray[l): 44", dR=ray[l)):
printf ("eihrray(0): %p", eihrray[0]):
printf("edhrray(1): p", eihrzay([l)):
peintf (“"iAeray: 9", iAsray);

CS270-Spring Semester 2016 19

Copyright ©TheMs Graw-HIIC:

LookingAhead: C Pointers

@ Pointers can be used for array access

// dynamic allocation for array

int *iArray = malloc(2*sizeof(int));
iArray([0] = 1234; iArray[l) = 5678;

printf("iArray[0]): $d", iArray[0]);

printf (“"iArray(l): %d", ikeray([i)):

print# ("edArray[0): %", &iRrray[0)):
printf ("adArray[l): %", &dRrray[l)):
printf(“ikrzay: %p", iksray):

CS270 -Spring Semester 2016 20

Copyright €T}

LookingAhead: C Structures

o Structures

struct Student {
char firstiame[80)];
char lastiame[80);
int testScores([2)];
char letterGrade;
}:
struet Btudent student;
struet Btudent students([10);

CS270 - Spring Semester 2016 21

Copyright T}

LookingAhead: C Structures

o Structures

typedef struct _Student {
char firstiame[80)];
char lastMame[80);
int testScores[2);
char letterGrade;

} Btudent;

Student student;

Btudent students([10);

CS270 - Spring Semester 2016 22

Copyright T}

LookingAhead: C Structures

@ Structures

typedef struct {
char firstiame[80);
char lastName([80);
int testScores([2];
char lettexGrade;

} Btudent;

Student student;

Btudent students[10);

CS270-Spring Semester 2016 23

Copyright ©TheMs Graw-HIIC:

LookingAhead: C Structures

@ Accessing structures

void func(Student student)

{
strepy(student . firstName, "John");
student. lettexrGrade = 'A';

void fune(Btudent “student)

{
strepy(student=->firstName, "“John") ;
student->lettezGrade = 'A';

CS270 -Spring Semester 2016 24

Copyright el

LookingAhead: Makefiles

o File list and compiler flags

CS270-Spring Semester 2016 2

Copyright oy

LookingAhead: Makefiles

o File dependencies

Compile .c source to .o cbjects
.e.0:
@echo "Compiling C source files"
$(CC) $(cC_FLAGS) $<

Make .e files depend on .h files
${C_oaJS): §{C_HRADERS)

CS270 - Spring Semester 2016 26

Copyright Ly

Looking Ahead: Makefiles

@ Build target (default)
§# Target is the exscutable
defanlt: $(C_OBJS)
@echo "Linking ocbject modules"
$(CC) $(LD_FLAGS) $(C OBJS) -o $(EXE)

CS270-Spring Semester 2016 27

Copyright ©TheMs Graw-HIIC:

Looking Ahead: Makefiles

@ Miscellaneous targets

Clean up the directory

clean:
@echo "Cleaning up project directory"
m =f ¥ o Ve §(EXE)

Package up the directery

package:
@eche "Cleaning up preject directezy"
tar cvf ecmample.tar ../emample

CS270 -Spring Semester 2016 28

