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The Memory Hierarchy GoalThe Memory Hierarchy Goal

Fact:  Large memories are slow and fast 
memories are small

How do we create a memory that gives the 
illusion of being large, cheap and fast (most of 
the time)?
n With hierarchy
n With parallelism

Fact:  Large memories are slow and fast 
memories are small

How do we create a memory that gives the 
illusion of being large, cheap and fast (most of 
the time)?
n With hierarchy
n With parallelism
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Size (bytes):    100’s   10K’s                 M’s                    G’s                    T’s

Cost:         highest                                                                               lowest

q Take advantage of the principle of locality to present the user with as 
much memory as is available in the cheapest technology at the 
speed offered by the fastest technology
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Memory TechnologyMemory Technology
Static RAM (SRAM)
n 0.5-2.5ns, 2010: $2000–$5000 per GB (2015: same?)

Dynamic RAM (DRAM)
n 50-70ns, 2010: $20–$75 per GB (2015: <$10 per GB)

Flash Memory
n 70-150ns, 2010: $4-$12 per GB (2015: $.14 per GB)

Magnetic disk
n 5ms-20ms, $0.2-$2.0 per GB (2015: $.7 per GB)

Ideal memory
n Access time of SRAM
n Capacity and cost/GB of disk

Static RAM (SRAM)
n 0.5-2.5ns, 2010: $2000–$5000 per GB (2015: same?)

Dynamic RAM (DRAM)
n 50-70ns, 2010: $20–$75 per GB (2015: <$10 per GB)

Flash Memory
n 70-150ns, 2010: $4-$12 per GB (2015: $.14 per GB)

Magnetic disk
n 5ms-20ms, $0.2-$2.0 per GB (2015: $.7 per GB)

Ideal memory
n Access time of SRAM
n Capacity and cost/GB of disk

§
5.1 Introduction
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Principle of LocalityPrinciple of Locality

Programs access a small proportion of their 
address space at any time
Temporal locality
n Items accessed recently are likely to be accessed 

again soon
n e.g., instructions in a loop, induction variables

Spatial locality
n Items near those accessed recently are likely to be 

accessed soon
n E.g., sequential instruction access, array data

Programs access a small proportion of their 
address space at any time
Temporal locality
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n e.g., instructions in a loop, induction variables
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Taking Advantage of LocalityTaking Advantage of Locality

Memory hierarchy
Store everything on disk
Copy recently accessed (and nearby) items from 
disk to smaller DRAM memory
n Main memory

Copy more recently accessed (and nearby) 
items from DRAM to smaller SRAM memory
n Cache memory attached to CPU

Memory hierarchy
Store everything on disk
Copy recently accessed (and nearby) items from 
disk to smaller DRAM memory
n Main memory

Copy more recently accessed (and nearby) 
items from DRAM to smaller SRAM memory
n Cache memory attached to CPU
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Memory Hierarchy LevelsMemory Hierarchy Levels
Block (aka line): unit of copying
n May be multiple words

If accessed data is present in 
upper level
n Hit: access satisfied by upper level

Hit ratio: hits/accesses

If accessed data is absent
n Miss: block copied from lower level

Time taken: miss penalty
Miss ratio: misses/accesses
= 1 – hit ratio

n Then accessed data supplied from 
upper level

Block (aka line): unit of copying
n May be multiple words

If accessed data is present in 
upper level
n Hit: access satisfied by upper level

Hit ratio: hits/accesses

If accessed data is absent
n Miss: block copied from lower level

Time taken: miss penalty
Miss ratio: misses/accesses
= 1 – hit ratio

n Then accessed data supplied from 
upper level
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Characteristics of the Memory HierarchyCharacteristics of the Memory Hierarchy

Increasing 
distance 
from the 
processor 
in access 
time

Inclusive–
what is in L1$ 
is a subset of 
what is in L2$  
is a subset of 
what is in MM 
that is a 
subset of is in 
SM

L1$

L2$

Main Memory

Secondary  Memory

Processor

(Relative) size of the memory at each level

4-8 bytes (word)

1 to 4 blocks

1,024+ bytes (disk sector = page)

8-32 bytes (block)

1111

Cache SizeCache Size

Increasing cache size

hit rate

1/(cycle time)

optimum
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Cache MemoryCache Memory
Cache memory
n The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

Cache memory
n The level of the memory hierarchy closest to the CPU

Given accesses X1, …, Xn–1, Xn

§
5.2 The Basics of C

aches

n How do we know if 
the data is present?

n Where do we look?
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Block Size ConsiderationsBlock Size Considerations

Larger blocks should reduce miss rate
n Due to spatial locality

But in a fixed-sized cache
n Larger blocks ⇒ fewer of them

More competition ⇒ increased miss rate
n Larger blocks ⇒ pollution

Larger miss penalty
n Can override benefit of reduced miss rate
n Early restart and critical-word-first can help
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Larger miss penalty
n Can override benefit of reduced miss rate
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Cache MissesCache Misses

On cache hit, CPU proceeds normally
On cache miss
n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

Restart instruction fetch
n Data cache miss

Complete data access

On cache hit, CPU proceeds normally
On cache miss
n Stall the CPU pipeline
n Fetch block from next level of hierarchy
n Instruction cache miss

Restart instruction fetch
n Data cache miss

Complete data access

Static vs Dynamic RAMsStatic vs Dynamic RAMs

Chapter 5 — Large and 
Fast: Exploiting Memory 

Hierarchy — 16

Chapter 5 — Large and 
Fast: Exploiting Memory 

Hierarchy — 16



5

1717

Random Access Memory (RAM)Random Access Memory (RAM)

Memory
cell
array

Address
decoder

Read/write
circuits

Address bits

Data bits

1818

Six-Transistor SRAM CellSix-Transistor SRAM Cell

Bit line

Word
line

Bit line

bit bit

1919

Dynamic RAM (DRAM) CellDynamic RAM (DRAM) Cell

Word line

Bit
line

“Single-transistor DRAM cell”
Robert Dennard’s 1967 invevention
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Advanced DRAM OrganizationAdvanced DRAM Organization

Bits in a DRAM are organized as a rectangular 
array
n DRAM accesses an entire row
n Burst mode: supply successive words from a row with 

reduced latency
Double data rate (DDR) DRAM
n Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
n Separate DDR inputs and outputs

Bits in a DRAM are organized as a rectangular 
array
n DRAM accesses an entire row
n Burst mode: supply successive words from a row with 

reduced latency
Double data rate (DDR) DRAM
n Transfer on rising and falling clock edges

Quad data rate (QDR) DRAM
n Separate DDR inputs and outputs
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DRAM GenerationsDRAM Generations
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Year Capacity $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50
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Average Access TimeAverage Access Time

Hit time is also important for performance
Average memory access time (AMAT)
n AMAT = Hit time + Miss rate × Miss penalty

Example
n CPU with 1ns clock, hit time = 1 cycle, miss penalty = 

20 cycles, I-cache miss rate = 5%
n AMAT = 1 + 0.05 × 20 = 2ns

2 cycles per instruction

Hit time is also important for performance
Average memory access time (AMAT)
n AMAT = Hit time + Miss rate × Miss penalty

Example
n CPU with 1ns clock, hit time = 1 cycle, miss penalty = 

20 cycles, I-cache miss rate = 5%
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2 cycles per instruction
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Performance SummaryPerformance Summary

When CPU performance increased
n Miss penalty becomes more significant

Can’t neglect cache behavior when evaluating 
system performance

When CPU performance increased
n Miss penalty becomes more significant

Can’t neglect cache behavior when evaluating 
system performance
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Multilevel CachesMultilevel Caches

Primary cache attached to CPU
n Small, but fast

Level-2 cache services misses from primary 
cache
n Larger, slower, but still faster than main memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Primary cache attached to CPU
n Small, but fast

Level-2 cache services misses from primary 
cache
n Larger, slower, but still faster than main memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache
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Interactions with Advanced CPUsInteractions with Advanced CPUs

Out-of-order CPUs can execute instructions 
during cache miss
n Pending store stays in load/store unit
n Dependent instructions wait in reservation stations

Independent instructions continue

Effect of miss depends on program data flow
n Much harder to analyse
n Use system simulation
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n Much harder to analyse
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Virtual MemoryVirtual Memory

Use main memory as a “cache” for secondary 
(disk) storage
n Managed jointly by CPU hardware and the operating 

system (OS)
Programs share main memory
n Each gets a private virtual address space holding its 

frequently used code and data
n Protected from other programs

CPU and OS translate virtual addresses to 
physical addresses
n VM “block” is called a page
n VM translation “miss” is called a page fault

Use main memory as a “cache” for secondary 
(disk) storage
n Managed jointly by CPU hardware and the operating 

system (OS)
Programs share main memory
n Each gets a private virtual address space holding its 

frequently used code and data
n Protected from other programs

CPU and OS translate virtual addresses to 
physical addresses
n VM “block” is called a page
n VM translation “miss” is called a page fault

§
5.4 Virtual M

em
ory

Chapter 6 — Storage and 
Other I/O Topics — 27

Chapter 6 — Storage and 
Other I/O Topics — 27

Disk StorageDisk Storage
Nonvolatile, rotating magnetic storageNonvolatile, rotating magnetic storage

§
6.3 D

isk Storage
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Disk Sectors and AccessDisk Sectors and Access

Each sector records
n Sector ID
n Data (512 bytes, 4096 bytes proposed)
n Error correcting code (ECC)

Used to hide defects and recording errors
n Synchronization fields and gaps

Access to a sector involves
n Queuing delay if other accesses are pending
n Seek: move the heads
n Rotational latency
n Data transfer
n Controller overhead
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n Synchronization fields and gaps
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n Queuing delay if other accesses are pending
n Seek: move the heads
n Rotational latency
n Data transfer
n Controller overhead
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Disk Access ExampleDisk Access Example

Given
n 512B sector, 15,000rpm, 4ms average seek time, 

100MB/s transfer rate, 0.2ms controller overhead, idle 
disk

Average read time
n 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time is 1ms
n Average read time = 3.2ms

Given
n 512B sector, 15,000rpm, 4ms average seek time, 

100MB/s transfer rate, 0.2ms controller overhead, idle 
disk

Average read time
n 4ms seek time

+ ½ / (15,000/60) = 2ms rotational latency
+ 512 / 100MB/s = 0.005ms transfer time
+ 0.2ms controller delay
= 6.2ms

If actual average seek time is 1ms
n Average read time = 3.2ms
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Disk Performance IssuesDisk Performance Issues

Manufacturers quote average seek time
n Based on all possible seeks
n Locality and OS scheduling lead to smaller actual 

average seek times
Smart disk controller allocate physical sectors on 
disk
n Present logical sector interface to host
n SCSI, ATA, SATA

Disk drives include caches
n Prefetch sectors in anticipation of access
n Avoid seek and rotational delay
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Flash StorageFlash Storage

Nonvolatile semiconductor storage
n 100× – 1000× faster than disk
n Smaller, lower power, more robust
n But more $/GB (between disk and DRAM)

Nonvolatile semiconductor storage
n 100× – 1000× faster than disk
n Smaller, lower power, more robust
n But more $/GB (between disk and DRAM)

§
6.4 Flash Storage
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Flash TypesFlash Types

NOR flash: bit cell like a NOR gate
n Random read/write access
n Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate
n Denser (bits/area), but block-at-a-time access
n Cheaper per GB
n Used for USB keys, media storage, …

Flash bits wears out after 1000’s of accesses
n Not suitable for direct RAM or disk replacement
n Wear leveling: remap data to less used blocks

NOR flash: bit cell like a NOR gate
n Random read/write access
n Used for instruction memory in embedded systems

NAND flash: bit cell like a NAND gate
n Denser (bits/area), but block-at-a-time access
n Cheaper per GB
n Used for USB keys, media storage, …

Flash bits wears out after 1000’s of accesses
n Not suitable for direct RAM or disk replacement
n Wear leveling: remap data to less used blocks
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Virtual vs. Physical AddressVirtual vs. Physical Address
Processor assumes a certain memory 
addressing scheme:
n A block of data is called a virtual page
n An address is called virtual (or logical) address

Main memory may have a different addressing 
scheme:
n Real memory address is called a physical address, 

MMU translates virtual address to physical address
n Complete address translation table is large and must 

therefore reside in main memory
n MMU contains TLB (translation lookaside buffer), 

which is a small cache of the address translation table

Processor assumes a certain memory 
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n A block of data is called a virtual page
n An address is called virtual (or logical) address

Main memory may have a different addressing 
scheme:
n Real memory address is called a physical address, 

MMU translates virtual address to physical address
n Complete address translation table is large and must 

therefore reside in main memory
n MMU contains TLB (translation lookaside buffer), 

which is a small cache of the address translation table
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Page Fault PenaltyPage Fault Penalty

On page fault, the page must be fetched from 
disk
n Takes millions of clock cycles
n Handled by OS code

Try to minimize page fault rate
n Smart replacement algorithms

On page fault, the page must be fetched from 
disk
n Takes millions of clock cycles
n Handled by OS code

Try to minimize page fault rate
n Smart replacement algorithms
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Memory ProtectionMemory Protection

Different tasks can share parts of their virtual 
address spaces
n But need to protect against errant access
n Requires OS assistance

Hardware support for OS protection
n Privileged supervisor mode (aka kernel mode)
n Privileged instructions
n Page tables and other state information only 

accessible in supervisor mode
n System call exception (e.g., syscall in MIPS)

Different tasks can share parts of their virtual 
address spaces
n But need to protect against errant access
n Requires OS assistance

Hardware support for OS protection
n Privileged supervisor mode (aka kernel mode)
n Privileged instructions
n Page tables and other state information only 
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n System call exception (e.g., syscall in MIPS)
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The Memory HierarchyThe Memory Hierarchy

Common principles apply at all levels of the 
memory hierarchy
n Based on notions of caching

At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy

Common principles apply at all levels of the 
memory hierarchy
n Based on notions of caching

At each level in the hierarchy
n Block placement
n Finding a block
n Replacement on a miss
n Write policy
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Virtual MachinesVirtual Machines

Host computer emulates guest operating system 
and machine resources
n Improved isolation of multiple guests
n Avoids security and reliability problems
n Aids sharing of resources

Virtualization has some performance impact
n Feasible with modern high-performance comptuers

Examples
n IBM VM/370 (1970s technology!)
n VMWare
n Microsoft Virtual PC

Host computer emulates guest operating system 
and machine resources
n Improved isolation of multiple guests
n Avoids security and reliability problems
n Aids sharing of resources

Virtualization has some performance impact
n Feasible with modern high-performance comptuers

Examples
n IBM VM/370 (1970s technology!)
n VMWare
n Microsoft Virtual PC

§
5.6 Virtual M

achines
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Multilevel On-Chip CachesMultilevel On-Chip Caches

§
5.10 R

eal Stuff: 
The AM

D
 O

pteron X4 and Intel N
ehalem

Per core: 32KB L1 I-cache, 32KB L1 D-cache, 512KB L2 cache

Intel Nehalem 4-core processor
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3-Level Cache Organization3-Level Cache Organization
Intel Nehalem AMD Opteron X4

L1 caches
(per core)

L1 I-cache: 32KB, 64-byte 
blocks, 4-way, approx LRU 
replacement, hit time n/a
L1 D-cache: 32KB, 64-byte 
blocks, 8-way, approx LRU 
replacement, write-
back/allocate, hit time n/a

L1 I-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, hit time 3 cycles
L1 D-cache: 32KB, 64-byte 
blocks, 2-way, LRU 
replacement, write-
back/allocate, hit time 9 cycles

L2 unified 
cache
(per core)

256KB, 64-byte blocks, 8-way, 
approx LRU replacement, write-
back/allocate, hit time n/a

512KB, 64-byte blocks, 16-way, 
approx LRU replacement, write-
back/allocate, hit time n/a

L3 unified 
cache 
(shared)

8MB, 64-byte blocks, 16-way, 
replacement n/a, write-
back/allocate, hit time n/a

2MB, 64-byte blocks, 32-way, 
replace block shared by fewest 
cores, write-back/allocate, hit 
time 32 cycles

n/a: data not available
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Concluding RemarksConcluding Remarks

Fast memories are small, large memories are 
slow
n We really want fast, large memories L
n Caching gives this illusion J

Principle of locality
n Programs use a small part of their memory space 

frequently
Memory hierarchy
n L1 cache ↔ L2 cache ↔ … ↔ DRAM memory
↔ disk

Memory system design is critical for 
multiprocessors

Fast memories are small, large memories are 
slow
n We really want fast, large memories L
n Caching gives this illusion J

Principle of locality
n Programs use a small part of their memory space 

frequently
Memory hierarchy
n L1 cache ↔ L2 cache ↔ … ↔ DRAM memory
↔ disk

Memory system design is critical for 
multiprocessors

§
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