
1

Processor
Performance and

Parallelism

Processor
Performance and

Parallelism

Slides by YashwantMalaiya

Limited content from:
Computer Architecture

A Quantitative Approach
Hennessy, Patterson

Processor Execution timeProcessor Execution time

The time taken by a program to execute is the product of
n Number of machine instructions executed
n Number of clock cycles per instruction (CPI)
n Single clock period duration

Example: 10,000 instructions, CPI=2, clock period = 250
ps

The time taken by a program to execute is the product of
n Number of machine instructions executed
n Number of clock cycles per instruction (CPI)
n Single clock period duration

Example: 10,000 instructions, CPI=2, clock period = 250
ps

period ClockCPICount nInstructioTime CPU
nInstructio per CyclesCount nInstructioCycles Clock

××=

×=

.sec610.51210.2502410

250000,0
−=−××=

××= psnsinstructio 2 1Time CPU

CS	270	- Spring	Semester	2016 22

Processor Execution timeProcessor Execution time

Instruction Count for a program
n Determined by program, ISA and compiler

Average Cycles per instruction (CPI)
n Determined by CPU hardware
n If different instructions have different CPI

Average CPI affected by instruction mix
Clock cycle time (inverse of frequency)
n Logic levels
n technology

Instruction Count for a program
n Determined by program, ISA and compiler

Average Cycles per instruction (CPI)
n Determined by CPU hardware
n If different instructions have different CPI

Average CPI affected by instruction mix
Clock cycle time (inverse of frequency)
n Logic levels
n technology

Time Cycle ClockCPICount nInstructioTime CPU ××=

CS	270	- Spring	Semester	2016 33

Reducing clock cycle timeReducing clock cycle time

Has worked well for
decades.
Small transistor
dimensions implied
smaller delays and hence
lower clock cycle time.
Not any more.

Has worked well for
decades.
Small transistor
dimensions implied
smaller delays and hence
lower clock cycle time.
Not any more.

CS	270	- Spring	Semester	2016 44

2

CPI (cycles per instruction)CPI (cycles per instruction)

What is LC-3 cycles per instruction?
Instructions take 5-9 cycles (p. 568), assuming
memory access time is one clock period.
n LC-3 CPI may be about 6*. (ideal)

No cache, memory access time = 100 cycles?
n LC-3 CPI would be very high.

Cache reduces access time to 2 cycles.
n LC-3 CPI higher than 6, but still reasonable.

What is LC-3 cycles per instruction?
Instructions take 5-9 cycles (p. 568), assuming
memory access time is one clock period.
n LC-3 CPI may be about 6*. (ideal)

No cache, memory access time = 100 cycles?
n LC-3 CPI would be very high.

Cache reduces access time to 2 cycles.
n LC-3 CPI higher than 6, but still reasonable.

Load/store instructions
are about 20-30%

CS	270	- Spring	Semester	2016 55

Parallelism to save timeParallelism to save time

Do things in parallel to save time.
Example: Pipelining
n Divide flow into stages.
n Let instructions flow into the pipeline.
n At a time multiple instructions are under execution.

Do things in parallel to save time.
Example: Pipelining
n Divide flow into stages.
n Let instructions flow into the pipeline.
n At a time multiple instructions are under execution.

CS	270	- Spring	Semester	2016 66

CS 270 - Spring Semester
2016

CS 270 - Spring Semester
2016

Pipelining AnalogyPipelining Analogy
Pipelined laundry: overlapping execution
n Parallelism improves performance

Pipelined laundry: overlapping execution
n Parallelism improves performance

n Four loads:
n time

= 4x2 = 8 hours
n Pipelined:

n Time in example
= 7x0.5 = 3.5 hours

n Non-stop
= 4x0.5 = 2 hours.

77
CS 270 - Spring Semester

2016
CS 270 - Spring Semester

2016

Pipeline Processor PerformancePipeline Processor Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

88

3

Pipelining: IssuesPipelining: Issues

Cannot predict which branch will be taken.
n Actually you may be able to make a good guess.
n Some performance penalty for bad guesses.

Instructions may depend on results of previous
instructions.
n There may be a way to get around that problem in

some cases.

Cannot predict which branch will be taken.
n Actually you may be able to make a good guess.
n Some performance penalty for bad guesses.

Instructions may depend on results of previous
instructions.
n There may be a way to get around that problem in

some cases.

CS	270	- Spring	Semester	2016 99

Instruction level parallelism (ILP):Instruction level parallelism (ILP):

Pipelining is one example.
Multiple issue: have multiple copies of resources
n Multiple instructions start at the same time
n Need careful scheduling

Compiler assisted scheduling
Hardware assisted (“superscaler”): “dynamic scheduling”

n Ex: AMD Opteron x4
n CPI can be less than 1!.

Pipelining is one example.
Multiple issue: have multiple copies of resources
n Multiple instructions start at the same time
n Need careful scheduling

Compiler assisted scheduling
Hardware assisted (“superscaler”): “dynamic scheduling”

n Ex: AMD Opteron x4
n CPI can be less than 1!.

CS	270	- Spring	Semester	2016 1010

Flynn’s taxonomyFlynn’s taxonomy
Michael J. Flynn, 1966Michael J. Flynn, 1966

Data Streams
Single Multiple

Instruction
Streams

Single SISD:
Intel Pentium 4

SIMD: SSE
instructions of x86

Multiple MISD:
No examples today

MIMD:
Intel Xeon e5345

n Instruction level parallelism is still SISD
n SSE (Streaming SIMD Extensions): vector

operations
n Intel Xeon e5345: 4 cores

CS	270	- Spring	Semester	2016 1111

Multi what?Multi what?
Multitasking: tasks share a processor
Multithreading: threads share a processor
Multiprocessors: using multiple processors
n For example multi-core processors (multiples

processors on the same chip)
n Scheduling of tasks/subtasks needed

Thread level parallelism:
n multiple threads on one/more processors

Simultaneous multi-threading:
n multiple threads in parallel (using multiple states)

Multitasking: tasks share a processor
Multithreading: threads share a processor
Multiprocessors: using multiple processors
n For example multi-core processors (multiples

processors on the same chip)
n Scheduling of tasks/subtasks needed

Thread level parallelism:
n multiple threads on one/more processors

Simultaneous multi-threading:
n multiple threads in parallel (using multiple states)

CS	270	- Spring	Semester	2016 1212

4

Multi-core processorsMulti-core processors

Power consumption has
become a limiting factor
Key advantage: lower power
consumption for the same
performance
n Ex: 20% lower clock

frequency: 87% performance,
51% power.

A processor can switch to
lower frequency to reduce
power.
N cores: can run n or more
threads.

Power consumption has
become a limiting factor
Key advantage: lower power
consumption for the same
performance
n Ex: 20% lower clock

frequency: 87% performance,
51% power.

A processor can switch to
lower frequency to reduce
power.
N cores: can run n or more
threads.

CS	270	- Spring	Semester	2016 1313

Multi-core processorsMulti-core processors

Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.
Cores may use superscalar or simultaneous
multi-threading architectures.

Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.
Cores may use superscalar or simultaneous
multi-threading architectures.

CS	270	- Spring	Semester	2016 1414

LC-3
states
LC-3

states

Instructio
n

Cycles

ADD,
AND,
NOT, JMP

5

TRAP 8

LD, LDR,
ST, STR

7

LDI, STI 9

BR 5, 6

JSR 6

1515CS	270	- Spring	Semester	2016

