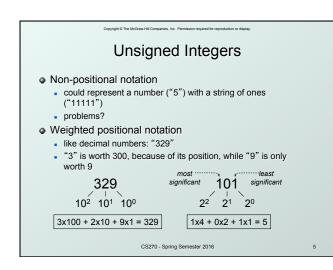
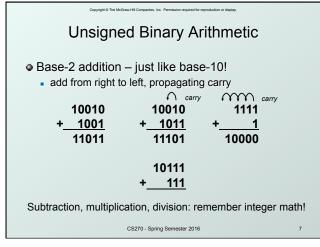
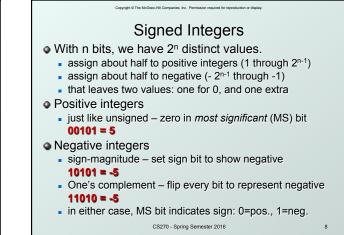
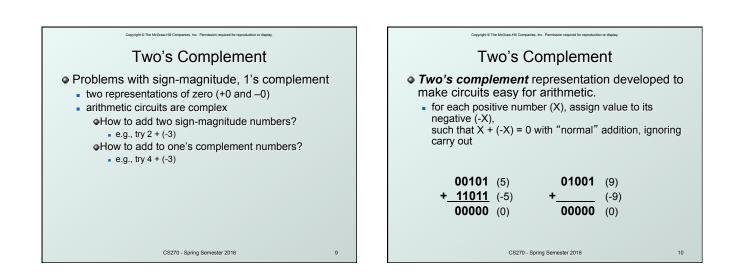

How do we represent data in a computer?

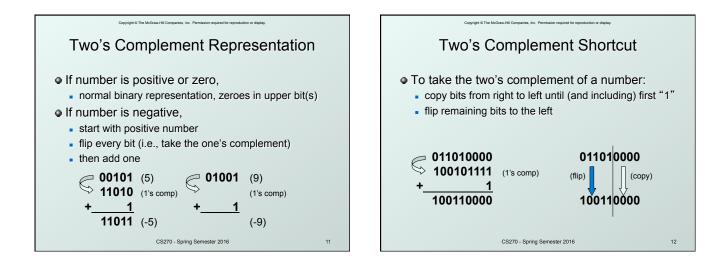

- At the lowest level, a computer is an electronic machine.
 - works by controlling the flow of electrons
- Easy to recognize two conditions:
 - 1. presence of a voltage we'll call this state "1"
 - 2. absence of a voltage we'll call this state "0"
- Could base state on *value* of voltage, but control and detection circuits more complex.
 - compare turning on a light switch to measuring or regulating voltage

CS270 - Spring Semester 2016

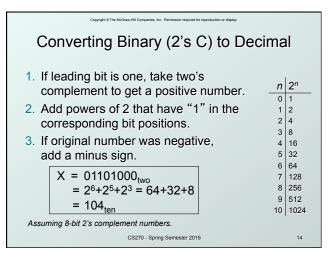

2

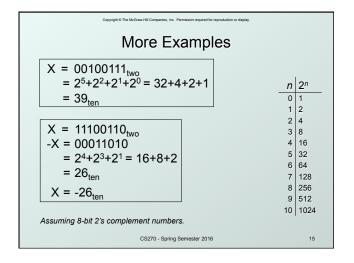


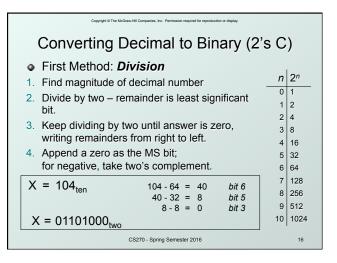


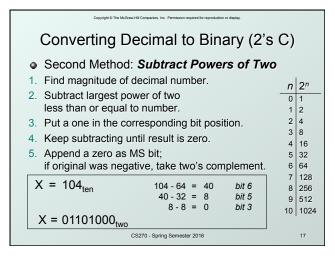


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.											
Unsig	ne	d Ir	nteg	gers (cont.)							
An <i>n</i> -bit unsign from 0 to 2 ⁿ -1.	ned	inte	ger	represents 2 ⁿ values	:						
	2 ²	21	20								
-	0	0	0	0							
	0	0	1	1							
	0	1	0	2							
	0	1	1	3							
	1	0	0	4							
	1	0	1	5							
	1	1	0	6							
	1	1	1	7							
	ester 2016	6									

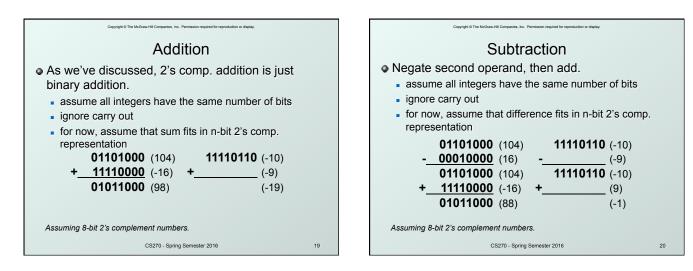


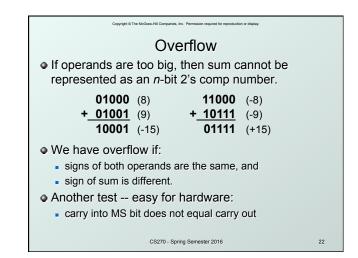


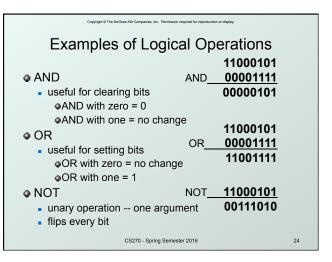


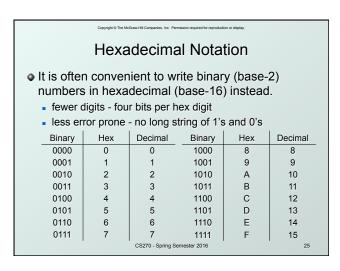


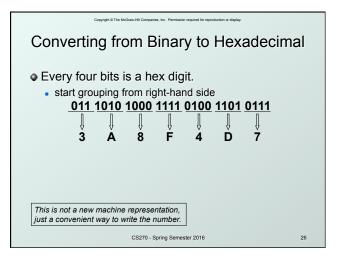

Copyright © The McGraw-Hit Companies, Inc. Permission required for reproduction or display.												
٥					n plen ^{bit – it l}						egers	
•	Range of an n-bit number: -2 ⁿ⁻¹ through 2 ⁿ⁻¹ – 1.											
The most negative number has no positive counterpart.											art.	
	-2 ³	2 ²	2 ¹	20			-23	2²	2 ¹	20		
	0	0	0	0	0		1	0	0	0	-8	
	0	0	0	1	1		1	0	0	1	-7	
	0	0	1	0	2		1	0	1	0	-6	
	0	0	1	1	3		1	0	1	1	-5	
	0	1	0	0	4		1	1	0	0	-4	
	0	1	0	1	5		1	1	0	1	-3	
	0	1	1	0	6		1	1	1	0	-2	
	0	1	1	1	7		1	1	1	1	-1	
					CS270 -	Spring Se	mester 2	016				13

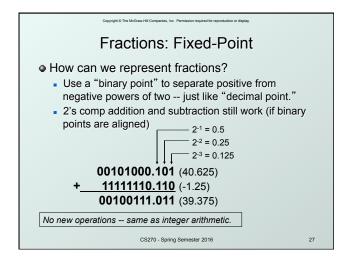


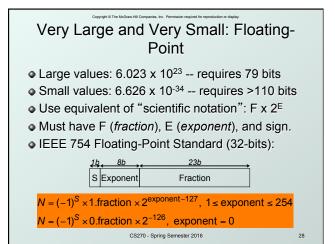


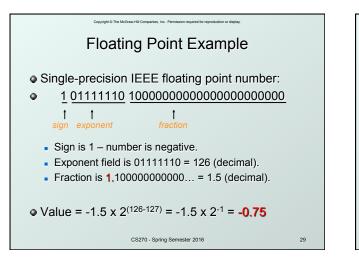


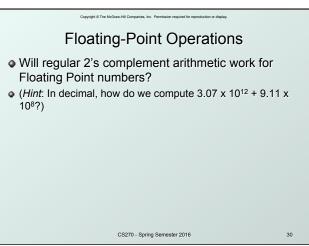


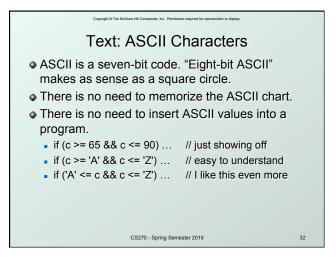

Copyright of The McCaree Hell Comparation. The The Ministerion merganised for reproductions or departy Sign Extension										
 To add two numbers, we must represent them with the same number of bits. 										
If we just pad wi	ith zeroes	on the left:								
<u>4-bit</u> <u>8-bit</u> 0100 (4) 00000100 (still 4) 1100 (-4) 00001100 (12, not -4)										
 Instead, replicat 	e the MS	bit the sign bit:								
<u>4-bit</u> 0100 (4) 1100 (-4)	<u>8-bit</u> 00000100 11111100	. ,								
	CS270 - Spring Sem	ester 2016	21							

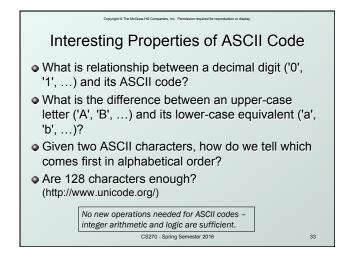


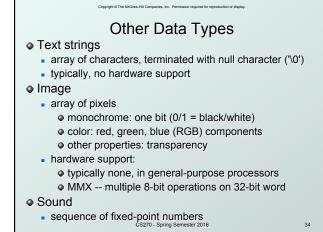

Copyright 6 The McGraw-Hill Companies, Inc. Permission required for reproduction or display,													
Logical Operations													
 Operations on logical TRUE or FALSE 													
 two states takes one bit to represent: TRUE=1, FALSE=0 													
AB	A AND B	AAND B A B AOR B A NOT A											
0 0	0	0	0	0	0	1							
0 1	0	0 1 1 1 0											
10	0 1 0 1												
1 1	1	1	1	1									
 View <i>n</i>-bit number as a collection of <i>n</i> logical values operation applied to each bit independently 													
		CS270	- Spring	g Semester 2016		23							











Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.																		
		Т	- ex	kt:	Α	١S	С	(Cł	าล	ra	ict	er	s				
ASC	II: I	Ma	aps	: 1	28	ch	nar	ac	ter	rs t	0	7-t	bit	со	de.			
pri	nta	ble	an	ld r	nor	n-pr	int	abl	е (ES	C,	DE	EL,)) cha	arac	cter	s
00	nul	10	dle	20	sp	30	0	40	@	50	Ρ	60	•	70	р			
	soh				!	31		41		51		61		71				
	stx					32	-	42	_	52		62		72	r			
	etx								-	53	-	63						
04	eot	14	dc4	24	\$	34	4	44	-	54	т	64	d	74	t			
05	enq	15	nak	25	%	35	5	45	Е	55	U	65	е	75	u			
06	ack	16	syn	26	&	36	6	46	F	56	V	66	f	76	v			
07	bel	17	etb	27	'	37	7	47	G	57	W	67	g	77	W			
08	bs	18	can	28	(38	8	48	Н	58	Х	68	h	78	х			
09	ht	19	em	29)	39	9	49	1	59	Υ	69	i	79	у			
0a	nl	1a	sub	2a	*	3a	:	4a	J	5a	Ζ	6a	i	7a	z			
0b	vt	1b	esc	2b	+	3b	;	4b	к	5b	1	6b	k	7b	{			
0c	np	1c	fs	2c	,	3c		4c	L	5c	i	6c	1	7c	ì			
0d	cr	1d	gs	2d	-	3d	=	4d	М	5d	1	6d	m	7d	}			
0e	so	1e	rs			3e	>	4e	Ν	5e		6e	n	7e	~			
Of	si	1f	us	2f	1	3f	?	4f	0	5f		6f	0	7f	del			
					C	CS270	- Spi	ring Se	emes	ter 20'	16						:	31
		_					_				_							

Copyright © The McGrave-Hill Comparises. Inc. Premission required for reproduction or display.

- Some data types are supported directly by the instruction set architecture.
- For LC-3, there is only one hardware-supported data type:
 - 16-bit 2's complement signed integer
 - Operations: ADD, AND, NOT
- Other data types are supported by <u>interpreting</u> 16-bit values as logical, text, fixed-point, floatingpoint, etc., in the software that we write.