
1/8/16

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 14
Functions

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions
Smaller, simpler, subcomponent of program
Provides abstraction
n  hide low-level details, give high-level structure
n  easier to understand overall program flow
n  enables separable, independent development

C functions
n  not methods—no objects, here!
n  zero or multiple arguments passed in
n  single result returned (optional)
n  return value is always a particular type

In other languages, called procedures, routines, ...
2 CS270 - Spring Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of High-Level Structure
int main()
{
 SetupBoard(); /* place pieces on board */
 DetermineSides(); /* choose black/white */

 /* Play game */
 do {
 WhitesTurn();
 BlacksTurn();
 } while (NoOutcomeYet());
}

Structure of program
is evident, even without
knowing implementation.

3 CS270 - Spring Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions in C
Declaration (also called prototype)
 int Factorial(int n);

Function call -- used in expression
 a = x + Factorial(f + g);

type of
return value

name of
function

types of all
arguments

1. evaluate arguments

2, execute function

3. use return value in expression
4 CS270 - Spring Semester 2016

1/8/16

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function Definition
State type, name, types of arguments
n  must match function declaration
n  give name to each argument (doesn’t have to match

declaration)
 int Factorial(int n)
 {
 int i;
 int result = 1;
 for (i = 1; i <= n; i++)
 result *= i;
 return result;

 }

gives control back to
calling function and

returns value
5 CS270 - Spring Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Why Declaration?

Since function definition also includes
return and argument types, why is declaration
needed?
 Use might be seen before definition.
 Compiler needs to know return and arg types
 and number of arguments.
 Definition might be in a different file, written by
 a different programmer.
n  include a “header” file with function declarations only
n  compile separately, link together to make executable

6 CS270 - Spring Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

double ValueInDollars(double amount, double rate);
int main()
{

 ...
 dollars = ValueInDollars(francs,
 DOLLARS_PER_FRANC);
 printf("%f francs equals %f dollars.\n",
 francs, dollars);
 ...

}
double ValueInDollars(double amount, double rate)
{
 return amount * rate;
}

Example

function declaration (prototype)
function call (invocation)

function definition (code)

7 CS270 - Spring Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Implementing Functions: Overview
Activation record (stack frame)
n  information about each function,

including arguments and local variables
n  stored on run-time stack

Calling function

push new activation
 record
copy values into
 arguments
call function

get result from stack

Called function

execute code
put result in
 activation record
pop activation record
 from stack
return

8 CS270 - Spring Semester 2016

