
1/28/16 

1 

Chapter 15 
Debugging 

Original slides from Gregory Byrd, North 
Carolina State University 

Modified slides by Chris Wilcox,             
Colorado State University 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

2 CS270 – Fall Semester 2016 

Debugging with High Level Languages 
Same goals as low-level debugging 
n  Examine and set values in memory 
n  Execute portions of program 
n  Stop execution when (and where) desired 

Want debugging tools to operate on 
high-level language constructs 
n  Examine and set variables, not memory locations 
n  Trace and set breakpoints on statements and function 

calls, not instructions 
n  … but also want access to low-level tools when 

needed 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

3 

Types of Errors 

Syntactic Errors 
n  Input code is not legal 
n  Caught by compiler (or other translation mechanism) 

Semantic Errors 
n  Legal code, but not what programmer intended 
n  Not caught by compiler, because syntax is correct 

Algorithmic Errors 
n  Problem with the logic of the program 
n  Program does what programmer intended,  

but it doesn’t solve the right problem 

CS270 – Fall Semester 2016 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

4 

Syntactic Errors 
Common errors: 
n  missing semicolon or brace 
n  mis-spelled type in declaration 

One mistake can cause an avalanche of errors 
n  because compiler can’t recover and gets confused  

int main () { 
  int i 
  int j; 
  for (i = 0; i <= 10; i++) { 
    j = i * 7; 
    printf("%d x 7 = %d\n", i, j); 
  } 
} 

missing semicolon 

CS270 – Fall Semester 2016 



1/28/16 

2 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

5 

Semantic Errors 
Common Errors 
n  Missing braces to group statements together 
n  Confusing assignment with equality 
n  Wrong assumptions about precedence/associativity 
n  Wrong limits on for-loop counter 
n  Uninitialized variables 

int main () { 
  int i 
  int j; 
  for (i = 0; i <= 10; i++)  
    j = i * 7; 
    printf("%d x 7 = %d\n", i, j); 
} 

missing braces, so printf 
not part of for loop 

CS270 – Fall Semester 2016 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

6 

Algorithmic Errors 

Design is wrong, so program does not solve the 
correct problem 
Difficult to find 
n  Program does what we intended 
n  Problem might not show up until after many runs 

Maybe difficult to fix 
n  May have to redesign 
n  May have large impact on program code 

Classic example: Y2K bug 
n  only allow 2 digits for year, assuming 19__ 

CS270 – Fall Semester 2016 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

7 

Debugging Techniques 
Ad-Hoc 
n  Insert printf statements to track control flow and 

display values 
n  Add code to explicitly check for values out of 

expected range, incorrect branches, etc. 
n  Advantage: 

 No special debugging tools needed 
n  Disadvantages: 

•  Frequent recompile and execute cycles makes this 
method time-consuming 

•  Requires intimate knowledge of code 
•  Inserted code can be buggy 

CS270 – Fall Semester 2016 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

8 

Debugging Techniques 
Source-Level Debugger 
n  Examine and set variable values 
n  Tracing, breakpoints, single-stepping on source-code 

statements 

CS270 – Fall Semester 2016 



1/28/16 

3 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

9 

Source-Level Debugger 

main window 
of Cygwin 
version of gdb 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

10 

Source-Level Debugging Techniques 
Breakpoints 
n  Stop when a particular statement is reached 
n  Stop at entry or exit of a function 
n  Conditional breakpoints: 

Stop if a variable is equal to a specific value, etc. 
n  Watchpoints: 

Stop when a variable is set to a specific value 
Single-Stepping 
n  Execute one statement at a time 
n  Step “into” or step “over” function calls 

Step into: next statement is first inside function call 
Step over: execute function without stopping 
Step out: finish executing function, stop on exit 

CS270 – Fall Semester 2016 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

11 

Source-Level Debugging Techniques 

Displaying Values 
n  Show value consistent with declared type of variable 
n  Dereference pointers (variables that hold addresses) 

•  See Chapter 16 
n  Inspect parts of a data structure 

•  See Chapters 19 

CS270 – Fall Semester 2016 


