CS270 Practice Sheet "Number Crunching"

These problems are similar to the one in Recitation 2 and Homework 1. Answers can be checked on the websites shown at the bottom of the assignment.

Goals

To understand data representation in a computer, including boolean, integer, floating point, and character values, and the associated logical and arithmetic operations.

Question 1 (10 points): What is the minimum number of bits required to represent all of the 52 cards in a deck ? If you use the minimum number of bits, how many bit patterns are unused?

Minimum number of bits: 6 , since $2^{6}=64,5$ bits is not enough, since $2^{5}=32$, 7 bits is too much
Number of unused bit patterns: 12, since $64-52=12$

Question 2 (10 points): What are the binary, hexadecimal, and base 6 representations of the decimal value 5678 ?

Hexadecimal: $5678 / 16=354,5678 \% 16=14=0 x E$ (digit 0)

$$
\begin{aligned}
& 354 / 16=22,354 \% 16=2=0 \times 2 \text { (digit } 1) \\
& 22 / 16=1,22 \% 16=6=0 \times 6(\text { digit } 2) \\
& 1 / 16=0,1 \% 16=1=0 \times 1(\text { digit } 3) \\
& \text { Answer: } 5678_{10}=162 \mathrm{E}_{16} \\
& \text { Confirmation: } 1 * 16^{3}+6 * 16^{2}+2 * 16+14=4096+1536+32+14=5678_{10}
\end{aligned}
$$

Binary: \quad Answer 5678 $\mathbf{1 0}_{0}=000101100010$ 1110 $_{2}$, this is very simple!
Confirmation: $2^{12}+2^{10}+2^{9}+2^{5}+2^{3}+2^{2}+2=5678_{10}$
Base 6: $\quad 5678 / 6=946,5678 \% 6=2$ (digit 0)
$946 / 6=157,946 \% 6=4($ digit 1$)$
$157 / 6=26,157 \% 6=1$ (digit 2)
$26 / 6=4,26 \% 6=2($ digit 3$)$
$4 / 6=0,4 \% 6=4$ (digit 4)
Asnwer: 5678 $\mathbf{1 0}^{0}=\mathbf{4 2 1 4 2}_{6}$
Confirmation: $4 * 6^{4} * 2 * 6^{3}+1 * 6^{2}+4 * 6+2=5184+432+36+24+2=5678$

Question 3 (10 points): What is the range of unsigned integers that can be stored using 4 bits? What is the range for signed integers represented in 1's and 2's complement, with the same number of bits?

Range of unsigned integers: 0 to 15
Range of signed integers: -7 to 7 (1's complement)
Range of signed integers: -8 to 7 (2 's complement)

Question 4 ($\mathbf{1 0}$ points): Show the 2 's complement addition of -8 plus +5 , with both numbers in binary using 6 bits. Hint: make sure that the resulting binary number corresponds to the correct answer.
$111000(-8)+000101(5)=111101(-3)$
Question 6 (10 points): Show the results of the following bitwise operations (using the same number of bits as shown in each problem):

NOT(1011)	$=\mathbf{0 1 0 0}$
1001 OR 1100	$=\mathbf{1 1 0 1}$
1001 AND 1100	$=\mathbf{1 0 0 0}$
1001 XOR 1100	$=\mathbf{0 1 0 1}$

Question 7 (10 points): Show the results of the following bitwise operations:
$\sim(0 \times 45 \mid 0 \times 23)=\sim(01000101 \mid 00100011)=\sim(01100111)=10011000=0 \times 98$
Question 8 (10 points): Find the decimal floating-point number corresponding to the hex value shown below (assuming IEEE 32-bit floating-point representation):
$0 x 40840000=$ sign: 0 , exponent: 10000001, mantissa: 00001000000000000000000
Exponent $=129-127=2$, mantissa $=1.00001$
Binary method: $1.00001 * 2^{2}=100.001=4.125$
Decimal method: $1.03125 * 2^{2}=4.125$
Answer: 4.125

Question 9 (10 points): Find the binary and hexadecimal numbers for the following floating-point value (assuming IEEE 32-bit floating-point representation):
$5.75 \mathrm{f}=101.11$ in binary, left of decimal $4+1=5$, right of decimal $0.5+0.25=0.75$
Must normalize 101.11 by shifting right 2 bits to 1.0111 , so exponent is 2
Sign $=0$ (positive), exponent $=2+127$ bias $=129=10000001$, mantissa $=0111$
Put it together $01000000101110000000000000000000=01000000101110000000000000000000$ Answer: 0x40B80000

Question 10 (10 points): Translate the following strings from characters into ASCII hexadecimal values and vice versa:
"What" = 0x57686174

Website for ASCII conversion: www.branah.com/ascii-converter
Website for IEEE floating-point conversion: www.h-schmidt.net/FloatConverter
Website for two's complement math: www.planetcalc.com/747

