Chapter 5
The LC-3

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Computing Layers

) Problems

é """"""""""

e Algorithms
Language

Devices

CS 270 - Fall Semester 2016 2

(Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction of display.

Instruction Set Architecture

@ |SA = All of the programmer-visible
components and operations of the computer
= memory organization

@ address space -- how may locations can be addressed?
@ addressibility -- how many bits per location?
= register set
@ how many? what size? how are they used?
= instruction set
@ opcodes
@ data types
@ addressing modes

@ ISA provides all information needed for someone that
wants to write a program in machine language

= or translate from a high-level language to machine language.

CS 270 - Fall Semester 2016 3

‘Copyright © The McGraw-Hil Companies, Inc. Permission required fo reproduction of display.

LC-3 Overview: Memory and Registers
@ Memory
= address space: 216 |ocations (16-bit addresses)
= addressability: 16 bits
@ Registers
= temporary storage, accessed in a single machine cycle
@ accessing memory takes longer than a single cycle
= eight general-purpose registers: R0 - R7
@ each 16 bits wide
@ how many bits to uniquely identify a register?
= other registers

@ not directly addressable, but used by (and affected
by) instructions

@ PC (program counter), condition codes

CS 270 - Fall Semester 2016 4

(Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction of isplay.

LC-3 Overview: Instruction Set

@ Opcodes
= 15 opcodes, 3 types of instructions
=« Operate: ADD, AND, NOT
« Data movement. LD, LDI, LDR, LEA, ST, STR, STI
» Control: BR, JSR/JSRR, JMP, RTI, TRAP

= some opcodes set/clear condition codes, based on
result:

@N = negative, Z = zero, P = positive (> 0)
@ Data Types
= 16-bit 2’ s complement integer
@ Addressing Modes
= How is the location of an operand specified?
= non-memory addresses: immediate, register
= memory addresses: PC-relafive, indirect, base+offset

CS 270 - Fall Semester 2016

5}

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Operate Instructions

@ Only three operations: ADD, AND, NOT
@ Source and destination operands are registers
= These instructions do not reference memory.

= ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.

9 Will show dataflow diagrarm with each
instruction.

= illustrates when and where data moves
to accomplish the desired operation

CS 270 - Fall Semester 2016

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduciion or disply.

NOT (Register)

NOT [1 0 0 1] pst | sre 1 1 1 1 1 1

Register File

Dst -

Note: Src and Dst
could be the same register.

CS 270 - Fall Semester 2016

Copyright € The MeGraw-Hil Comparies, In. Permission requitd for reproduction or display.

ADD/AND (Register)

ADD [0 0 0 1] pst | szt [o]o o] szc2 |

AND [0 1 0 1] pst | srel [o]o o] sre2 |
Register File

CS 270 - Fall Semester 2016

(Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction of isplay.

ADD/AND (Immediate)

ADD [0 0 0 1] pst | srel [1] Toms |

AND [0 1 0 1] pst | sret [1] Toms |

Register File

Dst -

Note: Immediate field is
sign-extended.

IR[4:0
LI CEY B =

1

I

Instruction Reg

CS 270 - Fall Semester 2016 9

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Using Operate Instructions

@ With only ADD, AND, NOT...

=« How do we subtract?

=« How do we OR?

= How do we copy from one register to another?
= How do we initialize a register to zero?

CS 270 - Fall Semester 2016 10

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduciion or disply.

Data Movement Instructions

@ Load -- read data from memory to register
= LD: PC-relative mode
= LDR: base+offset mode
= LDI: indirect mode

@ Store -- write data from register to memory
= ST:PC-relative mode
= STR: base+offset mode
= STI: indirect mode

@ Load effective address -- compute address,
save in register
= LEA: immediate mode
= does not access memory

CS 270 - Fall Semester 2016 m

Copyright € The MeGraw-Hil Comparies, In. Permission requitd for reproduction or display.

PC-Relative Addressing Mode

@ Want to specify address directly in the instruction
= Butan address is 16 bits, and so is an instruction!

= After subtracting 4 bits for opcode and 3 bits for register,
we have 9 bits available for address.

@ Solution:

» Use the 9 bits as a signed offset from the current PC.
@ 9 bits: — 256 < offset < +255
@ Can form address such that; PC—256 < X <PC +255

= Remember that PC is incremented as part of the FETCH phase;
= This is done before the EVALUATE ADDRESS stage.

CS 270 - Fall Semester 2016 5

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction or display.

LD (PC-Relative)

ID |0 0 1 o] pst | PCoffsetd

PC Register File Memory
L 1

Dst

1

Sext

T |IR@:0)
Instruction Reg

MAR E

s

MDR
CS 270 - Fall Semester 2016 5

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

ST (PC-Relative)

ST [0 0 1 1| sre | PCoffsetd

PC Register File Memory
L 1

Src
1
i

Sext

T |IR@:0)
Instruction Reg

MAR E

e

MDR
CS 270 - Fall Semester 2016 14

(Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction of display.

Indirect Addressing Mode

@ With PC-relative mode, can only address data
within 256 words of the instruction.

= What about the rest of memory?

@ Solution #1.

= Read address from memory location,
then load/store to that address.

@ First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for
load/store.

CS 270 - Fall Semester 2016 o

LDI (Indirect)

LDI[1 0 1 0] pst | PCoffset

PC Register File Memory
L 1 -

1

Sext
IR0

Instruction Reg

MDR! E
CS 270 - Fall Semester 2016 o

‘Copyright © The McGraw-Hil Comparies, Inc. Permiss

STI (Indirect)

equired forreproducton orcisplay.

STI [1 0 1 1] sre | PCoffsetd
PC Register File Memory
L 1
Sic

Sext
T IR@:0)

Instruction Reg

MDR!
CS 270 - Fall Semester 2016 w7

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Base + Offset Addressing Mode

@ With PC-relative mode, can only address data
within 256 words of the instruction.
=« What about the rest of memory?
@ Solution #2:
» Use a register to generate a full 16-bit address.
@ 4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are
used as a signed offset.
« Offset is sign-extended before adding to base
register.

CS 270 - Fall Semester 2016 18

Copyright © The McGraw-Hil Companies, Inc. Permiss

required for reproduction or isplay.

LDR (Base+Offset)

LDRlU 11 0‘ Dst | Base | offseté
Register File Memory

Dst

£ Base

Sext —

IR[5:0]

Instruction Reg 2

MAR 5
B SRR

MDR
CS 270 - Fall Semester 2016)

Copyight € The McGraw-Hil Comparies, In. Permission requitd for reproduction or display.

STR (Base+Offset)

STR |0 11 1| Src ‘ Basel offset6
Register File Memory

Src

Base

Sext —

IR[5:0]

Instruction Reg 2

MAR ;

e

MDR
CS 270 - Fall Semester 2016 20

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction or display.

Load Effective Address

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

LEA (Immediate)

. , LEA[1 1 1 o] pst | PCoffset9]
@ Computes address like PC-relative (PC plus
signed offset) and stores the result into a pC Register File
register. 1 T
1
Note: The address is stored in the register,
not the contents of the memory location. .
ext
T IR0
Instruction Reg
CS 270 - Fall Semester 2016 21 CS 270 - Fall Semester 2016 22
Example Control Instructions
Address [o — @ Used to alter the sequence of instructions

x30F6 111000111111 1101 RIePC-3=x30F4

x30F7 0001010001101110 R2«R1+14=x3102

M[PC - 5] « R2
x30F8 000110101 11111011 g rn® o

x30F9 01 01010010100000 R2 0

x30FA 000101001010010T1 R2¢«R2+5=5

%x30FB 001 110100010011 10 MRIt4eR2

M[x3102] 5

R3 « M[M[x30F4]]

x30FC 101 0011111110111 R3 « M[x3102]
opcode R3¢«5

CS 270 - Fall Semester 2016 2

(by changing the Program Counter)
@ Conditional Branch
= branch is taken if a specified condition is true
@ signed offset is added to PC to yield new PC
= else, the branch is not taken
@ PC is not changed, points to the next instruction
@ Unconditional Branch (or Jump)
= always changes the PC
@ TRAP
= changes PC to the address of an OS “service routine”

= routine will return control to the next instruction (after the
TRAP)

CS 270 - Fall Semester 2016 o

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction or display.

Condition Codes

@ LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)
@ Set by any instruction that writes a value to a
register
(ADD, AND, NOT, LD, LDR, LDI, LEA)
@ Exactly one will be set at all times
= Based on the last instruction that altered a register

CS 270 - Fall Semester 2016 25

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Branch Instruction

@ Branch specifies one or more condition codes.
@ If the set bit is specified, the branch is taken.
= PC-relative addressing:

target address is made by adding signed offset
(IR[8:0]) to current PC.

= Note: PC has already been incremented by FETCH
stage.

= Note: Target must be within 256 words of BR
instruction.
@ If the branch is not taken,
the next sequential instruction is executed.

CS 270 - Fall Semester 2016 2

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduciion or disply.

BR (PC-Relative)

BR [0 0 0 o[n[z]p] PCoffsets

PC

1 PCMUX

What happens if bits [11:9] are all zero? All one?

CS 270 - Fall Semester 2016 P

Copyright € The MeGraw-Hil Comparies, In. Permission requitd for reproduction or display.

Using Branch Instructions

@ Compute sum of the first 12 integers.
Program starts at location x3000.

R3 « 0
R2 « 12
R3 <« R3+R2
NO R2 « R2-1
YES L |
CS 270 - Fall Semester 2016 28

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction or display.

Sample Program

@ The solution to the previous problem is posted
on the website.

CS 270 - Fall Semester 2016 29

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

JMP (Register)
@ Jump is an unconditional branch -- always taken.
= Target address is the contents of a register.
= Allows any target address.

JMP 1 10 0/0 00 Base |0 00O0O0O

PC Register File

L E Base

CS 270 - Fall Semester 2016 20

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduciion or disply.

TRAP

TRAP [1 1 1 1[0 0 0 0] trapvects |

@ Calls a service routine, identified by 8-bit “trap
vector.”

vector |routine

input a character from the
keyboard

x21 |output a character to the monitor
x25 |halt the program

%23

@ When routine is done,
PC is set to the instruction following TRAP.
= We' ll talk about how this works later.

CS 270 - Fall Semester 2016 &

Copyright € The MeGraw-Hil Comparies, In. Permission requitd for reproduction or display.

Another Example
@ Count the occurrences of a character in a file
= Program begins at location x3000
= Read character from keyboard
= Load each character from a “file”

@ File is a sequence of memory locations
@ Starting address of file is stored in the memory location
immediately after the program
= If file character equals input character, increment counter
= End of file is indicated by an ASCII value: EOT (x04)
= At the end, print the number of characters and halt
(assume there will be less than 10 occurrences of the character)
@ A special character used to indicate the end of a sequence

is often called a sentinel.

= Useful when you don’t know ahead of time how many times

to execute a loop. i
CS 270 - Fall Semester 2016 32

‘Copyright © The McGraw-Hil Comparies, Inc. Permission required for reproduction or display.

Flow Chart

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Program (1 of 2)

Address Instruction Comments
C?:Zn:toz)o D:'Jne\? e Convert countto x3000 01 01010010100000 R2 « 0 (counter)
oSGy haracter %3001 001 0011000010000 R3eMx3102(pty)
Ptr = 1st file character %3002 1111000000100 0 11 mputtoRO(TRAPx23)
(R3 = M[x3012])
P{TIS:\:S;S(x3003 0110001011000000 R1 « MIR3]
Input char x3004 0001100001111100 R4eRI-4(EOT)
from keybd
(TRAP x23) %3005 00000100000O0O100O00O0 IF Z, goto x300E
HALT
Incr Count x3006 1001001001111111 R1 « NOT R1
Load char from file (R2=R2+1)
(R1=M[R3)) x3007 0001001001100001 R1e<R1+1
. X3008 0001001001000000 R1 «R1+RO
Load next char from file
(R3=Ra+ 1. RL=M[RA) %3009 00001010000000O0 1 IFNorP gotox300B
CS 270 - Fall Semester 2016 2 CS 270 - Fall Semester 2016 24
Copytg © The McGraw-+48 Conpanes, I Permission equted o eproctn ordiphy. Copyrigh © The McGraw+4 Compaes, . Permsion fered fo repoducton o cipey:
Program (2 of 2)
Address Instruction Comments
x300A 000101001010000T1 R2<R2+1 !
x300B 0001011011100001 R3¢« R3+1
x300C ' 0110001011 0000O0O0 R1 « MIR3]
Filled arrow
x300D 00001111111 10110 Goto x3004 = info to be processed.
Unfilled arrow
x300E 001000000O0O0O0O0C1O00 RO « Mx3013] = control signal.
x300F 00010000000O0O0OO0T1O0 RO ~RO+R2
x3010 1 1110000001000 0 1 PrintRO(TRAPXx21)
%3011 '1111000000100101 HALT (TRAP x25)
X3012 Starting Address of File | . *
%3013 00000000O0O0C1I1O0000 ASCH x30(0°) -

CS 270 - Fall Semester 2016

35

‘Copyright © The McGraw-Hil Comparies, Inc. Permiss

or display.

Data Path Components

@ Global bus

special set of wires that carry a 16-bit signal
to many components

inputs to the bus are “tri-state devices”, that only place a
signal on the bus when they are enabled

only one (16-bit) signal should be enabled at any time
@ control unit decides which signal “drives” the bus
any number of components can read the bus
@ register only captures bus data if it is write-enabled
by the control unit
@ Memory
= Control and data registers for memory and 1/O devices
= memory: MAR, MDR (also control signal for read/write)

CS 270 - Fall Semester 2016 a7

Copyight € The McGraw-Hil Comparies, Inc. Permission requited for reproduction or display.

Data Path Components

9 ALU

= Accepts inputs from register file
and from sign-extended bits from IR (immediate field).

= Output goes to bus.
@ used by condition code logic, register file, memory
Q@ Register File
= Two read addresses (SR1, SR2), one write address
(BR)
= Input from bus
@ result of ALU operation or memory read
= Two 16-bit outputs
@ used by ALU, PC, memory address
@ data for store instructions passes through ALU

CS 270 - Fall Semester 2016 38

‘Copyright © The McGraw-Hil Comparies, Inc. Permiss

Data Path Components

@ PC and PCMUX
= Three inputs to PC, controlled by PCMUX
1.PC+1 - FETCH stage
2.Address adder — BR, JMP
3.bus — TRAP (discussed later)
» MAR and MARMUX
- Two inputs to MAR, controlled by MARMUX
1.Address adder — LD/ST, LDR/STR
2.Zero-extended IR[7:0] -- TRAP (discussed later)

CS 270 - Fall Semester 2016 29

Copyright € The MeGraw-Hil Comparies, In. Permission requitd for reproduction or display.

Data Path Components

@ Condition Code Logic
= Looks at value on bus and generates N, Z, P signals
= Registers set only when control unit enables them (LD.cC)

@ only certain instructions set the codes
(ADD, AND, NOT, LD, LDI, LDR, LEA)

@ Control Unit — Finite State Machine

= On each machine cycle, changes control signals for next
phase of instruction processing

@ who drives the bus? (GatePC, GateALU, ...)
@ which registers are write enabled? (LD.IR, LD.REG, ...)
@ which operation should ALU perform? (ALUK)

= Logic includes decoder for opcode, etc.

CS 270 - Fall Semester 2016 @

10

