

Copyright © The McGraw+HI Companies, Inc. Permission required for reproduction or display.	
Instruction Set Architecture	LC-3
 ISA = All of the programmer-visible components and operations of the computer memory organization address space how may locations can be addressed? addressibility how many bits per location? register set how many? what size? how are they used? instruction set opcodes data types addressing modes 	 Memor addre addre addre Registe temp a eight eight e h other
wants to write a program in machine language	● n
 or translate from a high-level language to machine language. 	o P
CS 270 - Fall Semester 2016	

CS 270 - Fall Semester 2016

LC-3 Overview: Instruction Set

Opcodes

- 15 opcodes, 3 types of instructions
- Operate: ADD, AND, NOT
- Data movement: LD, LDI, LDR, LEA, ST, STR, STI
- Control: BR, JSR/JSRR, JMP, RTI, TRAP
- some opcodes set/clear condition codes, based on result:
 - $\bullet N$ = negative, Z = zero, P = positive (> 0)
- Data Types
 - 16-bit 2's complement integer

Addressing Modes

- How is the location of an operand specified?
- non-memory addresses: immediate, register
- memory addresses: PC-relative, indirect, base+offset

Operate Instructions Only three operations: ADD, AND, NOT Source and destination operands are registers These instructions <u>do not</u> reference memory.

- ADD and AND can use "immediate" mode,
- where one operand is hard-wired into the instruction.
- Will show dataflow diagram with each instruction.
 - illustrates <u>when</u> and <u>where</u> data moves to accomplish the desired operation

CS 270 - Fall Semester 2016

Data Movement Instructions Load -- read data from memory to register

wight © The McGraw Hill Companies Inc. Remission maximal for resenduction or depin

- LD: PC-relative mode
- LDR: base+offset mode
- LDI: indirect mode
- Store -- write data from register to memory
 - ST: PC-relative mode
 - STR: base+offset mode
 - STI: indirect mode
- Load effective address -- compute address, save in register
 - LEA: immediate mode
 - does not access memory

CS 270 - Fall Semester 2016

11

PC-Relative Addressing Mode Want to specify address directly in the instruction But an address is 16 bits, and so is an instruction! After subtracting 4 bits for opcode and 3 bits for register, we have <u>9 bits</u> available for address. Solution: Use the 9 bits as a <u>signed offset</u> from the current PC. 9 bits: - 256 ≤ offset ≤ +255 Can form address such that: PC - 256 ≤ X ≤ PC +255 Remember that PC is incremented as part of the FETCH phase; This is done <u>before</u> the EVALUATE ADDRESS stage.

CS 270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.																		
Example																		
Addres	ss							Ins	stru	ıct	ion							Comments
x30F	6 1	L	1	1	0	0	0	1	1	1	1	1	1	1	1	0	1	R1 ← PC - 3 = x30F4
x30F	7 0	כ	0	0	1	0	1	0	0	0	1	1	0	1	1	1	0	R2 ← R1 + 14 = x3102
x30F	в с	כ	0	1	1	0	1	0	1	1	1	1	1	1	0	1	1	M[PC - 5] ← R2 M[x30F4] ← x3102
x30F	9 0	כ	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2 ← 0
x30F2	A C	כ	0	0	1	0	1	0	0	1	0	1	0	0	1	0	1	R2 ← R2 + 5 = 5
x30F1	вС	כ	1	1	1	0	1	0	0	0	1	0	0	1	1	1	0	M[R1+14] ← R2 M[x3102] ← 5
x30F	c 1	L 0	0 pc	1 ode	0	0	1	1	1	1	1	1	1	0	1	1	1	$R3 \leftarrow M[M[x30F4]]$ $R3 \leftarrow M[x3102]$ $R3 \leftarrow 5$
	CS 270 - Fall Semester 2016													23				

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.													
TRAP													
TRAP 15 14	13 12 1 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
• Calls a service routine, identified by 8-bit "trap													
vector."	vector	routine											
	x23 input a character from the keyboard												
	x21	output a character to the monitor											
	x25	halt the program											
When routine is done, PC is set to the instruction following TRAP.													
 We'll talk 	about ho	w this works later.											
		CS 270 - Fall Semester 2016 31											

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.																	
Program (1 of 2)																	
Address	_						In	stri	uct	ion							Comments
x3000	0	1	0	1	0	1	0	0	1	0	1	0	0	0	0	0	R2 ← 0 (counter)
x3001	0	0	1	0	0	1	1	0	0	0	0	1	0	0	0	0	R3 ← M[x3102] (ptr)
x3002	1	1	1	1	0	0	0	0	0	0	1	0	0	0	1	1	Input to R0 (TRAP x23)
x3003	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	R1 ← M[R3]
x3004	0	0	0	1	1	0	0	0	0	1	1	1	1	1	0	0	R4 ← R1 - 4 (EOT)
x3005	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	If Z, goto x300E
x3006	1	0	0	1	0	0	1	0	0	1	1	1	1	1	1	1	$R1 \leftarrow NOT R1$
x3007	0	0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	R1 ← R1 + 1
X3008	0	0	0	1	0	0	1	0	0	1	0	0	0	0	0	0	R1 ← R1 + R0
x3009	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	1	If N or P, goto x300B
	CS 270 - Fall Semester 2016													34			

Copyright © The McGraw-HII Companies, Inc. Permission required for reproduction or display.																	
Program (2 of 2)																	
Address		Instruction															Comments
x300A	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	1	R2 ← R2 + 1
x300B	0	0	0	1	0	1	1	0	1	1	1	0	0	0	0	1	R3 ← R3 + 1
x300C	0	1	1	0	0	0	1	0	1	1	0	0	0	0	0	0	R1 ← M[R3]
x300D	0	0	0	0	1	1	1	1	1	1	1	1	0	1	1	0	Goto x3004
x300E	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	R0 ← M[x3013]
x300F	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	R0 ← R0 + R2
x3010	1	1	1	1	0	0	0	0	0	0	1	0	0	0	0	1	Print R0 (TRAP x21)
x3011	1	1	1	1	0	0	0	0	0	0	1	0	0	1	0	1	HALT (TRAP x25)
X3012			St	ar	ti	ng	A	dd	re	ss	0	f	Fi	le			
x3013	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	ASCII x30 ('0')
							CS	270) - F	all S	iem	este	r 20	016			35

Data Path Components

Global bus

- special set of wires that carry a 16-bit signal to many components
- inputs to the bus are "tri-state devices", that only place a signal on the bus when they are enabled
- only one (16-bit) signal should be enabled at any time o control unit decides which signal "drives" the bus
- any number of components can read the bus
 - register only captures bus data if it is write-enabled by the control unit

Memory

- Control and data registers for memory and I/O devices
- memory: MAR, MDR (also control signal for read/write) CS 270 - Fall Semester 2016

37

Data Path Components

ALU

- Accepts inputs from register file
- and from sign-extended bits from IR (immediate field). Output goes to bus.
- used by condition code logic, register file, memory Register File

- Two read addresses (SR1, SR2), one write address (DR)
- Input from bus
- result of ALU operation or memory read Two 16-bit outputs
 - used by ALU, PC, memory address • data for store instructions passes through ALU

right © The McGraw Hill Companies Inc. Remission maximal for momentation or der Data Path Components

PC and PCMUX

- Three inputs to PC, controlled by PCMUX
 - 1.PC+1 FETCH stage
 - 2.Address adder BR, JMP
 - 3.bus TRAP (discussed later)

MAR and MARMUX

- Two inputs to MAR, controlled by MARMUX
 - 1.Address adder LD/ST, LDR/STR
 - 2.Zero-extended IR[7:0] -- TRAP (discussed later)

CS 270 - Fall Semester 2016

Copyright @ The McGraw-Hill Companies. Inc. Permission required for reproduction or displa

Data Path Components

- Condition Code Logic
 - Looks at value on bus and generates N, Z, P signals
 - Registers set only when control unit enables them (LD.CC) only certain instructions set the codes (ADD, AND, NOT, LD, LDI, LDR, LEA)

Control Unit – Finite State Machine

- On each machine cycle, changes control signals for next phase of instruction processing
 - who drives the bus? (GatePC, GateALU, ...)
 - which registers are write enabled? (LD.IR, LD.REG, ...)
 - which operation should ALU perform? (ALUK)
- Logic includes decoder for opcode, etc.

CS 270 - Fall Semester 2016

40