
1

Chapter 8

I/O

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox,

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

I/O: Connecting to Outside World

So far, we’ve learned how to:

 compute with values in registers

 load data from memory to registers

 store data from registers to memory

But where does data in memory come from?

And how does data get out of the system so that

humans can use it?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

I/O: Connecting to the Outside World

Types of I/O devices characterized by:
 behavior: input, output, storage

input: keyboard, motion detector, network interface

output: monitor, printer, network interface

storage: disk, CD-ROM

 data rate: how fast can data be transferred?

• keyboard: < 100 bytes/sec

• disk: 30 MB/s

• network: 1 Mb/s - 1 Gb/s

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

I/O Controller

Control/Status Registers

 CPU tells device what to do -- write to control register

 CPU checks if task is done -- read status register

Data Registers

 CPU transfers data to/from device

Device electronics

 performs actual operation

• pixels to screen, bits to disk, chars from keyboard

Graphics Controller
Control/Status

Output Data
Electronics

CPU

display

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Programming Interface

How are device registers identified?

 Memory-mapped vs. special instructions

How is timing of transfer managed?

 Asynchronous vs. synchronous

Who controls transfer?

 CPU (polling) vs. device (interrupts)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Memory-Mapped vs. I/O Instructions

Instructions

 designate opcode(s) for I/O

 register and operation encoded in instruction

Memory-mapped

 assign a memory

address to each device register

 use data movement instructions (load/store)

for control and data transfer

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Transfer Timing

I/O events generally happen much slower

than CPU cycles.

Synchronous

 data supplied at a fixed, predictable rate

 CPU reads/writes every X cycles

Asynchronous

 data rate less predictable

 CPU must synchronize with device,

so that it doesn’t miss data or write too quickly

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Transfer Control
Who determines when the next data transfer

occurs?

Polling

 CPU keeps checking status register until

new data arrives OR device ready for next data

 “Are we there yet? Are we there yet? Are we …

Interrupts

 Device sends a special signal to CPU when

new data arrives OR device ready for next data

 CPU can be performing other tasks instead of polling

device.

 “Wake me when we get there.”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

LC-3
Memory-mapped I/O (Table A.3)

Asynchronous devices
 synchronized through status registers

Polling and Interrupts

 Interrupt details will be discussed in Chapter 10

Location I/O Register Function

xFE00
Keyboard Status

(KBSR)
Bit [15] is one when keyboard has

received a new character.

xFE02 Keyboard Data (KBDR)
Bits [7:0] contain the last character

typed on keyboard.

xFE04 Display Status (DSR)
Bit [15] is one when device ready

to display char on screen.

xFE06 Display Data (DDR)
Character written to bits [7:0] will

be displayed on screen.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Input from Keyboard

When a character is typed:

 its ASCII code is placed in bits [7:0] of KBDR

(bits [15:8] are always zero)

 the “ready bit” (KBSR[15]) is set to one

 keyboard is disabled -- any typed characters will be

ignored

When KBDR is read:

 KBSR[15] is set to zero

 keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard

data

ready bit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Basic Input Routine

new

char?

read

character

YES

NO

Polling

POLL LDI R0, KBSRPtr

BRzp POLL

LDI R0, KBDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Simple Implementation: Memory-

Mapped Input

Address Control Logic

determines whether

MDR is loaded from

Memory or from KBSR/KBDR.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Output to Monitor

When Monitor is ready to display another

character:

 the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:

 DSR[15] is set to zero

 character in DDR[7:0] is displayed

 any other character data written to DDR is ignored

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Basic Output Routine

screen

ready?

write

character

YES

NO

Polling

POLL LDI R1, DSRPtr

BRzp POLL

STI R0, DDRPtr

...

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Simple Implementation: Memory-

Mapped Output

Sets LD.DDR

or selects

DSR as input.

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Keyboard Echo Routine

Usually, input character is also printed to screen.

 User gets feedback on character typed and knows its

ok to type the next character.

new

char?

read

character

YES

NO

screen

ready?

write

character

YES

NO

POLL1 LDI R0, KBSRPtr

BRzp POLL1

LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr

BRzp POLL2

STI R0, DDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

DSRPtr .FILL xFE04

DDRPtr .FILL xFE06

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Interrupt-Driven I/O

External device can:

(1)Force currently executing program to stop.

(2)Have the processor satisfy the device needs.

(3)Resume the program as if nothing happened.

Why?

 Polling consumes a lot of cycles, especially for rare

events – these cycles can be used for more

computation.

 I/O device is faster than the CPU.

 Example: Process previous input while collecting

current input. (See Example 8.1 in text.)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:

 A way for the I/O device to signal the CPU that an

interesting event has occurred.

 A way for the CPU to test if the interrupt signal is set

and if its priority is higher than current program.

Generating Signal

 Software sets "interrupt enable" bit in device register.

 When ready and IE bits are set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal

to processor

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Priority

Every instruction executes at a stated level of

urgency.

LC-3: 8 priority levels (PL0-PL7)

 Example:

Payroll program runs at PL0.

Nuclear power correction program runs at PL6.

 It’s OK for PL6 device to interrupt PL0 program,

but not the other way around.

Priority encoder selects highest-priority device,

compares to current processor priority level,

and generates interrupt signal if appropriate.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Testing for Interrupt Signal

CPU looks at signal between STORE and

FETCH phases.

If not set, continues with next instruction.

If set, transfers control to interrupt service

routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to

ISR

NO

YES

More details in Chapter 10.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Full Implementation of LC-3 Memory-

Mapped I/O

Because of interrupt enable bits, status registers (KBSR/DSR)

must be written, as well as read.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Review Questions

What is the danger of not testing the DSR

before writing data to the screen?

What is the danger of not testing the KBSR

before reading data from the keyboard?

What if the Monitor were a synchronous device,

e.g., we know that it will be ready 1 microsecond

after character is written.

 Can we avoid polling? How?

 What are advantages and disadvantages?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Review Questions

Do you think polling is a good approach for other

devices, such as a disk or a network interface?

What is the advantage of using LDI/STI for

accessing device registers?

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Interrupt-Driven I/O (Part 2)

See Chapter 10.2

CS270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Exception: Internal Interrupt

When something unexpected happens

inside the processor, it may cause an exception.

Examples:

 Privileged operation (e.g., RTI in user mode)

 Executing an illegal opcode

 Divide by zero

 Accessing an illegal address (e.g., protected system

memory)

Handled just like an interrupt

 Vector is determined internally by type of exception

 Priority is the same as running program
26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Interrupt-Driven I/O (Part 2)
Interrupts were introduced in Chapter 8.

1. External device signals need to be serviced.

2. Processor saves state and starts service routine.

3. When finished, processor restores state and

resumes program.

• Chapter 8 didn’t explain how (2) and (3) occur,

because it involves a stack.

• Now, we’re ready…

Interrupt is an unscripted subroutine call,

triggered by an external event.

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Processor State

What state is needed to completely capture the

state of a running process?

Processor Status Register
 Privilege [15], Priority Level [10:8], Condition Codes [2:0]

Program Counter

 Pointer to next instruction to be executed.

Registers

 Temporary process state that’s not stored in memory.

28

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Where to Save Processor State?
Can’t use registers.

 Programmer doesn’t know when interrupt might occur,

so she can’t prepare by saving critical registers.

 When resuming, need to restore state exactly as it was.

Memory allocated by service routine?

 Must save state before invoking routine,

so we wouldn’t know where.

 Also, interrupts may be nested – that is, an interrupt

service routine might also get interrupted!

Use a stack!

 Location of stack “hard-wired”.

 Push state to save, pop to restore.
29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Supervisor Stack

A special region of memory used as the stack

for interrupt service routines.

 Initial Supervisor Stack Pointer (SSP) stored in

Saved.SSP.

 Another register for storing User Stack Pointer (USP):

Saved.USP.

Want to use R6 as stack pointer.

 So that our PUSH/POP routines still work.

When switching from User mode to Supervisor

mode (as result of interrupt), save R6 to

Saved.USP.

30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Invoking the Service Routine (Details)
1. If Priv = 1 (user),

Saved.USP = R6, then R6 = Saved.SSP.

2. Push PSR and PC to Supervisor Stack.

3. Set PSR[15] = 0 (supervisor mode).

4. Set PSR[10:8] = priority of interrupt being serviced.

5. Set PSR[2:0] = 0.

6. Set MAR = x01vv, where vv = 8-bit interrupt vector

provided by interrupting device (e.g., keyboard = x80).

7. Load memory location (M[x01vv]) into MDR.

8. Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between

the STORE RESULT of the last user instruction and

the FETCH of the first ISR instruction.
31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Returning from Interrupt
Special instruction – RTI – that restores state.

1. Pop PC from supervisor stack:

(PC = M[R6]; R6 = R6 + 1)

2. Pop PSR from supervisor stack:

(PSR = M[R6]; R6 = R6 + 1)

3. If going back to user mode, need to restore User Stack Pointer:

(if PSR[15] = 1, R6 = Saved.USP)

RTI is a privileged instruction.

 Can only be executed in Supervisor Mode.

 If executed in User Mode, causes an exception.
(More about that later.)

32

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Example (1)

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

/ / / / / /

x3006PC

Program A

ADDx3006

Executing ADD at location x3006 when Device B interrupts.

Saved.SSP

33

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Example (2)

/ / / / / /

x3007

PSR for A

/ / / / / /

/ / / / / /

x6200PC

R6

Program A

ADDx3006

Saved.USP = R6. R6 = Saved.SSP.

Push PSR and PC onto stack, then transfer to

Device B service routine (at x6200).

x6200

ISR for

Device B

x6210 RTI

34

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Example (3)

/ / / / / /

x3007

PSR for A

/ / / / / /

/ / / / / /

x6203PC

R6

Program A

ADDx3006

Executing AND at x6202 when Device C interrupts.

x6200

ISR for

Device B

ANDx6202

x6210 RTI

35

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Example (4)

/ / / / / /

x3007

PSR for A

x6203

PSR for B

x6300PC

R6

Program A

ADDx3006

x6200

ISR for

Device B

ANDx6202

ISR for

Device C

Push PSR and PC onto stack, then transfer to

Device C service routine (at x6300).

x6300

x6315 RTI

x6210 RTI

36

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Example (5)

/ / / / / /

x3007

PSR for A

x6203

PSR for B

x6203PC

R6

Program A

ADDx3006

x6200

ISR for

Device B

ANDx6202

ISR for

Device C

Execute RTI at x6315; pop PC and PSR from stack.

x6300

x6315 RTI

x6210 RTI

37

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS 270 - Fall Semester 2016

Example (6)

/ / / / / /

x3007

PSR for A

x6203

PSR for B

x3007PC

Program A

ADDx3006

x6200

ISR for

Device B

ANDx6202

ISR for

Device C

Execute RTI at x6210; pop PSR and PC from stack.

Restore R6. Continue Program A as if nothing happened.

x6300

x6315 RTI

x6210 RTI

Saved.SSP

38

