
1

Chapter 9

TRAP Routines and

Subroutines

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox,

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

System Calls

Certain operations require specialized knowledge
and protection:
 specific knowledge of I/O device registers

and the sequence of operations needed to use them

 I/O resources shared among multiple users/programs;
a mistake could affect lots of other users!

Not every programmer knows (or wants to know)
this level of detail

Solution: provide service routines or system calls
(in operating system) to safely and conveniently
perform low-level, privileged operations

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

System Call

1. User program invokes system call.

2. Operating system code performs operation.

3. Returns control to user program.

In LC-3, this is done through the TRAP mechanism.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

LC-3 TRAP Mechanism
1. A set of service routines.

 part of operating system -- routines start at arbitrary
addresses (convention is that system code is below x3000)

 up to 256 routines

2. Table of starting addresses.

 stored at x0000 through x00FF in memory

 called System Control Block in some architectures

3. TRAP instruction.

 used by program to transfer control to operating system

 8-bit trap vector names one of the 256 service routines

4. A linkage back to the user program.

 want execution to resume immediately after the TRAP
instruction

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

TRAP Instruction

Trap vector

 identifies which system call to invoke

 8-bit index into table of service routine addresses

in LC-3, this table is stored in memory at 0x0000 – 0x00FF

8-bit trap vector is zero-extended into 16-bit memory address

Where to go

 lookup starting address from table; place in PC

How to get back

 save address of next instruction (current PC) in R7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

TRAP

NOTE: PC has already been incremented during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

RET (JMP R7)

How do we transfer control back to

instruction following the TRAP?

We saved old PC in R7.

 JMP R7 gets us back to the user program at the

right spot.

 LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.

Must make sure that service routine does not

change R7, or we won’t know where to return.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

TRAP Mechanism Operation

1. Lookup starting address.

2. Transfer to service routine.

3. Return (JMP R7).

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example: Using the TRAP Instruction

.ORIG x3000

LD R2, TERM ; Load negative ASCII ‘7’
LD R3, ASCII ; Load ASCII difference

AGAIN TRAP x23 ; input character

ADD R1, R2, R0 ; Test for terminate

BRz EXIT ; Exit if done

ADD R0, R0, R3 ; Change to lowercase

TRAP x21 ; Output to monitor...

BRnzp AGAIN ; ... again and again...

TERM .FILL xFFC9 ; -‘7’

ASCII .FILL x0020 ; lowercase bit

EXIT TRAP x25 ; halt

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example: Output Service Routine
.ORIG x0430 ; syscall address

ST R7, SaveR7 ; save R7 & R1
ST R1, SaveR1

; ----- Write character

TryWrite LDI R1, CRTSR ; get status

BRzp TryWrite ; look for bit 15 on

WriteIt STI R0, CRTDR ; write char

; ----- Return from TRAP

Return LD R1, SaveR1 ; restore R1 & R7
LD R7, SaveR7
RET ; back to user

CRTSR.FILL xF3FC

CRTDR.FILL xF3FF

SaveR1 .FILL 0

SaveR7 .FILL 0
.END

stored in table,
location x21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

TRAP Routines and their Assembler

Names

vector symbol routine

x20 GETC read a single character (no echo)

x21 OUT output a character to the monitor

x22 PUTS write a string to the console

x23 IN
print prompt to console, read and

echo character from keyboard

x25 HALT halt the program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Saving and Restoring Registers
Must save the value of a register if:

 Its value will be destroyed by service routine

and

 We will need to use the value after that action.

Who saves?

 caller of service routine?

knows what it needs later, but may not know what

gets altered by called routine

 called service routine?

• knows what it alters, but does not know what will be

needed later by calling routine

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example

LEA R3, Binary ; load pointer

LD R6, ASCII; char to digit

LD R7, COUNT; initialize to 10

AGAIN TRAP x23 ; get character

ADD R0, R0, R6 ; convert to number

STR R0, R3, #0 ; store number

ADD R3, R3, #1 ; increment pointer

ADD R7, R7, -1 ; decrement counter

BRp AGAIN ; more?

BRnzp NEXT

ASCII .FILL xFFD0

COUNT .FILL #10

Binary .BLKW #10

What’s wrong with this routine?

What happens to R7?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Saving and Restoring Registers
Called routine -- “callee-save”
 Before start, save any registers that will be altered

(unless altered value is desired by calling program!)

 Before return, restore those same registers

Calling routine -- “caller-save”
 Save registers destroyed by own instructions or

by called routines (if known), if values needed later

save R7 before TRAP

save R0 before TRAP x23 (input character)

 Or avoid using those registers altogether

Values are saved by storing them in memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Question

Can a service routine call another service

routine?

If so, is there anything special the calling service

routine must do?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

What about User Code?

Service routines provide three main functions:

1. Shield programmers from system-specific details.

2. Write frequently-used code just once.

3. Protect system resources from malicious/clumsy

programmers.

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Subroutines
A subroutine is a program fragment that:
 lives in user space

 performs a well-defined task

 is invoked (called) by another user program

 returns control to the calling program when finished

Like a service routine, but not part of the OS
 not concerned with protecting hardware resources

 no special privilege required

Reasons for subroutines:
 reuse useful (and debugged!) code without having to

keep typing it in

 divide task among multiple programmers

 use vendor-supplied library of useful routines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

JSR Instruction

Jumps to a location (like a branch but

unconditional), and saves current PC (addr of

next instruction) in R7.

 saving the return address is called “linking”

 target address is PC-relative (PC + Sext(IR[10:0]))

 bit 11 specifies addressing mode

• if =1, PC-relative: target address = PC + Sext(IR[10:0])

• if =0, register: target address = contents of register IR[8:6]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

JSR

NOTE: PC has already been incremented during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

JSRR Instruction

Just like JSR, except Register addressing mode.

 target address is Base Register

 bit 11 specifies addressing mode

What important feature does JSRR provide

that JSR does not?

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

JSRR

NOTE: PC has already been incremented during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Returning from a Subroutine

RET (JMP R7) gets us back to the calling

routine.

 just like TRAP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3

ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Passing Information to/from

Subroutines
Arguments
 A value passed in to a subroutine is an argument.

 This is a value needed by the subroutine to do its job.

 Examples:

• In 2sComp routine, R0 is the number to be negated

• In OUT service routine, R0 is the character to be printed.

• In PUTS routine, R0 is address of string to be printed.

Return Values
 A value passed out of a subroutine is a return value.

 You called the subroutine to compute this value!

 Examples:

• In 2sComp routine, negated value is returned in R0.

• GETC service routine returns char from the keyboard in R0.

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Using Subroutines

In order to use a subroutine, a programmer must

know:

 its address (or at least a label that will be bound to its

address)

 its function (what does it do?)

NOTE: The programmer does not need to know

how the subroutine works, but what changes are visible in

the machine’s state after the routine has run.

 its arguments (where to pass data in, if any)

 its return values (where to get computed data, if any)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Saving and Restore Registers
Since subroutines are just like service routines,

we also need to save and restore registers, if

needed.

Generally use “callee-save” strategy,

except for return values.

 Save anything that the subroutine will alter internally

that shouldn’t be visible when the subroutine returns.

 It’s good practice to restore incoming arguments to

their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any

other subroutine or service routine (TRAP).

 Otherwise, you won’t be able to return to caller.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example
(1) Write a subroutine FirstChar to:

find the first occurrence

of a particular character (in R0)

in a string (pointed to by R1);

return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:

counts the number of occurrences

of a particular character (in R0)

in a string (pointed to by R1);

return count in R2.

Can write the second subroutine first,

without knowing the implementation of FirstChar!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R3 <- M(R2)

R3=0

R1 <- R2 + 1

restore
regs

return

no

yes

save R7,

since we’re using JSR

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

CountChar Implementation
; subroutine to count occurrences of a char
CountChar

ST R3, CCR3 ; save registers
ST R4, CCR4
ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 ; save original pointer
AND R4, R4, #0 ; count = 0

CC1 JSR FirstChar ; find next occurrence
LDR R3, R2, #0 ; null?
BRz CC2 ; done if null
ADD R4, R4, #1 ; increment count
ADD R1, R2, #1 ; increment pointer
BRnzp CC1

CC2 ADD R2, R4, #0 ; return value to R2
LD R3, CCR3 ; restore regs
LD R4, CCR4
LD R1, CCR1
LD R7, CCR7
RET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

FirstChar Algorithm

save regs

R2 <- R1

R3 <- M(R2)

R3=0

R3=R0

R2 <- R2 + 1

restore
regs

return

no

no

yes

yes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

FirstChar Implementation
; subroutine to find first occurrence of a char
FirstChar

ST R3, FCR3 ; save registers

ST R4, FCR4 ; save original char

NOT R4, R0 ; negate for comparisons

ADD R4, R4, #1

ADD R2, R1, #0 ; initialize pointer

FC1 LDR R3, R2, #0 ; read character

BRz FC2 ; if null, we’re done
ADD R3, R3, R4 ; see if matches input

BRz FC2 ; if yes, we’re done
ADD R2, R2, #1 ; increment pointer

BRnzp FC1

FC2 LD R3, FCR3 ; restore registers

LD R4, FCR4

RET

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Library Routines
Vendor may provide object files containing
useful subroutines

 don’t want to provide source code -- intellectual
property

 assembler/linker must support EXTERNAL symbols
(or starting address of routine must be supplied to user)

.EXTERNAL SQRT

...

LD R2, SQAddr ; load SQRT addr

JSRR R2

...

SQAddr .FILL SQRT

Using JSRR, because we don’t know whether
SQRT is within 1024 instructions.

