
1

Chapter 11

Introduction to

Programming in C

Original slides from Gregory Byrd,

North Carolina State University

Modified slides by Chris Wilcox, Andres

Calderon J. and Sanjay Rajopadhye

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

C: A High-Level Language

Gives symbolic names to values
 don’t need to know register or memory location

Provides abstraction of underlying hardware
 operations do not depend on instruction set

 example: “a = b * c”, even without multiply instruction

Provides expressiveness
 use meaningful symbols that convey meaning

 simple expressions for control patterns (if-then-else)

Enhances code readability

Safeguards against bugs
 enforce rules or conditions at compile-time or run-time

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Compilation vs. Interpretation
Different ways of translating high-level language

Interpretation
 interpreter = program that executes program statements

 generally one line or command at a time

 limited scope of processing

 easy to debug, make changes, view intermediate results

 languages: BASIC, LISP, Perl, Java, Matlab, C-shell

Compilation
 Compiler = program that makes an executable from code

 translates statements into machine language

 performs optimization over multiple statements

 change requires recompilation

 optimized code can be harder to debug

 languages: C, C++, Fortran, Pascal
3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Compilation vs. Interpretation

Consider the following algorithm:

 Get W from the keyboard.

 X = W + W

 Y = X + X

 Z = Y + Y

 Print Z to screen.

If interpreting, how many arithmetic operations?

If compiling, can we simplify the computation?

Yes, by analyzing the entire program, we can

reduce to single arithmetic operation!

4

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Compiling a C Program
Compilers have multiple phases:

Preprocessor
 macro substitution

 conditional compilation

 source-level transformations

 output is still C code

Compiler
 generates machine instructions

 output is object file

Linker
 combines object files

(including libraries)

 output is executable image

C

Source and

Header Files

C Preprocessor

Compiler

Source Code

Analysis

Target Code

Synthesis

Symbol Table

Linker

Executable

Image

Library

Object Files

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Compiler

Source Code Analysis
 “front end”
 parses programs to identify its pieces:

(variables, expressions, statements, functions, etc.)

 depends on language, not on target machine

Code Generation
 “back end”
 generates machine code from analyzed source

 may optimize machine code for efficiency

 very dependent on target machine

Symbol Table
 map between symbolic names and items

 like assembler, but more kinds of information

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

A Simple Java Program

import java.lang;
public class Simple {

/* Function: main */
/* Description: count down from user input to STOP */
public static void main(String[] args)
{
/* variable declarations */
static final int STOP = 0;
int counter; /* an integer to hold count values */
int startPoint; /* starting point for countdown */

/* prompt user for input, assumes scanner */
System.out.printf("Enter a positive number: ");
startPoint = in.nextInt();

/* count down and print count */
for (counter=startPoint; counter>=STOP; counter--)
System.out.printf("%d\n", counter);

}
}

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

A Simple C Program

#include <stdio.h>
#define STOP 0

/* Function: main */
/* Description: counts down from user input to STOP */
int main(int argc, char *argv[])
{

int counter; // an integer to hold count values
int startPoint; // starting point for countdown

/* prompt user for input */
printf("Enter a positive number: ");
scanf("%d", &startPoint); /* read into startPoint */

/* count down and print count */
for (counter=startPoint; counter>=STOP; counter--)
printf("%d\n", counter);

return 0;
}

8

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Preprocessor Directives

#include <stdio.h>

 Before compiling, copy contents of header file

(stdio.h) into source code.

 Header files typically contain descriptions of

functions and variables needed by the program.

 No restrictions, could be any C source code,

including your own.

#define STOP 0

 Commonly called a macro, before compiling,

replace all instances of string "STOP" with "0"

 Used for values that are constant during execution,

but might change if the program is reused.

(requires recompilation.)

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Comments

Begins with /*, ends with */

Can span multiple lines

Cannot have a comment within a comment

C11 allows use of single line comments: //

Comments are not recognized within a string

 example: "my/*don't print this*/string"

would be printed as: my/*don't print this*/string

As before, use comments to help reader, not to

confuse or to restate the obvious

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

main Function

Every C program must have a main() function:

The main function contains the code that is

executed when the program is run.

As with all functions, the code for main lives

within brackets:

int main(int argc, char *argv[])

{

/* code goes here */

}

Java is similar, but C needs the size of array

(argc) since C has no length member.
11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

main Function

main() returns an int

Really

“I tried void main(), and it worked!”

This is an example of undefined behavior, which

cannot be refuted by experimentation.

12

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Variable Declarations

Variables are used as names for data items.

Each variable has a type, which tells the

compiler how the data is to be interpreted

(and how much space it needs).

int counter;

int startPoint;

int is a predefined signed integer type in C.

Types are determined at compile-time, not at
run-time. Consider int foo; foo = 12.34;

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Input and Output

Variety of I/O functions in C Standard Library:

Must include <stdio.h> to use them.

printf("%d\n", counter);

 String contains characters to print and formatting
directions for variables.

 This call prints the variable counter as a decimal
integer, followed by a linefeed (\n).

scanf("%d", &startPoint);

 String contains formatting directions for interpreting
the type of the input.

 This call reads a decimal integer and assigns it to the
variable startPoint. (Don't worry about the & yet!)

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

More About Output

Can print arbitrary expressions, not just variables

printf("%d\n", startPoint - counter);

Print multiple expressions with a single statement

printf("%d %d\n", counter,

startPoint - counter);

Different formatting options:
 %d decimal integer

 %x hexadecimal integer

 %c character (a single letter, number, %, @, /, etc.)

 %f floating-point number

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Examples
This code:
printf("%d is a prime number.\n", 43);

printf("43 + 59 in decimal is %d.\n", 43+59);

printf("43 + 59 in hex is %x.\n", 43+59);

printf("43 + 59 in char is %c.\n", 43+59);

produces this output:
43 is a prime number.

43 + 59 in decimal is 102.

43 + 59 in hex is 66.

43 + 59 in char is f.

16

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Examples of Input
Many of the same formatting characters are

available for user input.

scanf("%c", &nextChar);

 reads a single character and stores it in nextChar

scanf("%f", &radius);

 reads a floating point number and stores it in radius

scanf("%d %d", &length, &width);

 reads two decimal integers (separated by whitespace),

stores the first one in length and the second in width

Must use ampersand for variables being modified,

which represents the address in memory (pointer).

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Compiling and Linking

Various compilers available

 gcc, c99, c11, clang

 includes preprocessor, compiler, and linker

 Warning: some features are implementation dependent!

Lots and lots of options

 level of optimization, debugging

 preprocessor, linker options

 usually controlled by makefile

 intermediate files --

object (.o), assembler (.s), preprocessor (.i), etc.

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Remaining Chapters

A more detailed look at many C features:

 Variables and declarations

 Operators

 Control Structures

 Functions

 Data Structures

 I/O

Emphasis on how C is converted to assembly

language.

Also see C Reference in Appendix D.

19

