

State Machine

- Another type of sequential circuit
- Combines combinational logic with storage
- "Remembers" state, and changes output (and state) based on inputs and current state

- The state of a system is a snapshot of all the relevant elements of the system at the moment the snapshot is taken.
Examples:
- The state of a basketball game can be represented by the scoreboard: number of points, time remaining, possession, etc.
- The state of a tic-tac-toe game can be represented by the placement of X's and O's on the board.

State of Sequential Lock
Our lock example has four different states, labelled A-D:
A: The lock is not open, and no relevant operations have been performed.
B: The lock is not open, and the user has completed the R-13 operation.
C: The lock is not open, and the user has completed R-13, followed by L-22.
D : The lock is open.

State Diagram

- Shows states and actions that cause a transition between states.

Finite State Machine

- A system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each external output value

- Often described by a state diagram.
- Inputs trigger state transitions.
- Outputs are associated with each state (or with each transition).

CS270 - Fall Semester 2016

The Clock

- Frequently, a clock circuit triggers transition from one state to the next.

- At the beginning of each clock cycle, state machine makes a transition, based on the current state and the external inputs.
- Not always required. In lock example, the input itself triggers a transition.

Implementing a Finite State Machine

- Combinational logic

- Determine outputs and next state.

- Storage elements

- Maintain state representation.

Storage

- Each master-slave flipflop stores one state bit.
- The number of storage elements (flipflops) needed is determined by the number of states (and the representation of each state).
- Examples:
- Sequential lock
-Four states - two bits
- Basketball scoreboard
- 7 bits for each score, 5 bits for minutes, 6 bits for seconds, 1 bit for possession arrow, 1 bit for half,

From Logic to Data Path

- The data path of a computer is all the logic used to process information.
- See the data path of the LC-3 on next slide.
- Combinational Logic
- Decoders -- convert instructions into control signals
- Multiplexers -- select inputs and outputs
- ALU (Arithmetic and Logic Unit) -- operations on data
- Sequential Logic
- State machine -- coordinate control signals and data movement
- Registers and latches -- storage elements CS270 - Fall Semester 2016

