Chapter 2
Bits, Data Types, and Operations

How do we represent data in a computer?

- At the lowest level, a computer is an electronic machine.
 - works by controlling the flow of electrons
- Easy to recognize two conditions:
 1. presence of a voltage – we’ll call this state “1”
 2. absence of a voltage – we’ll call this state “0”
- Could base state on value of voltage, but control and detection circuits more complex.
 - compare turning on a light switch to measuring or regulating voltage

Computer is a binary digital system.

<table>
<thead>
<tr>
<th>Digital system:</th>
<th>Binary (base two) system:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• finite number of symbols</td>
<td>• has two states: 0 and 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital Values</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>“0”</td>
<td>“1”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analog Values</th>
<th>0</th>
<th>0.5</th>
<th>2.4</th>
<th>2.9 Volts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illegal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Binary system:
- has two states: 0 and 1

Digital and analog voltages:
- Analog voltages:
 0.0, 0.1, 0.11
- Digital voltages:
 0, 0.5, 2.4, 2.9 Volts

Basic unit of information is the binary digit, or bit.

Values with >2 states require multiple bits:
- A collection of two bits has four possible states:
 00, 01, 10, 11
- A collection of three bits has eight possible states:
 000, 001, 010, 011, 100, 101, 110, 111
- A collection of n bits has 2^n possible states.

What kinds of data do we need to represent?

- **Numbers** – signed, unsigned, integers, floating point, complex, rational, irrational, …
- **Text** – characters, strings, …
- **Logical** – true, false
- **Images** – pixels, colors, shapes, …
- **Sound** – wave forms
- **Instructions**
- …

Data type:
 - representation and operations within the computer

We’ll start with numbers…
Unsigned Integers

- Non-positional notation
 - could represent a number ("5") with a string of ones ("11111")
 - problems?
- Weighted positional notation
 - like decimal numbers: "329"
 - "3" is worth 300, because of its position, while "9" is only worth 9

\[
\begin{array}{c}
329 \\
10^2 \ 10^1 \ 10^0
\end{array}
\]

\[
\begin{array}{c}
2^3 \ 2^2 \ 2^1 \ 2^0
\end{array}
\]

\[
3\times100 + 2\times10 + 9\times1 = 329 \\
1\times4 + 0\times2 + 1\times1 = 5
\]

Unsigned Binary Arithmetic

- Base-2 addition – just like base-10!
 - add from right to left, propagating carry

\[
\begin{array}{c}
10010 \\
+ \ 1001 \\
11011
\end{array}
\]

\[
\begin{array}{c}
10010 \\
+ \ 1011 \\
11101
\end{array}
\]

\[
\begin{array}{c}
10010 \\
+ \ \ 1 \\
10000
\end{array}
\]

Signed Integers

- With n bits, we have \(2^n\) distinct values.
 - assign about half to positive integers (1 through \(2^{n-1}-1\))
 - assign about half to negative (- \(2^{n-1}-1\) through -1)
 - that leaves two values: one for 0, and one extra

Positive integers

- just like unsigned – zero in most significant (MS) bit

\[
00101 = 5
\]

Negative integers

- sign-magnitude – set sign bit to show negative

\[
10101 = -5
\]
- One’s complement – flip every bit to represent negative

\[
11010 = -6
\]
- in either case, MS bit indicates sign: 0=pos., 1=neg.

Unsigned Integers (cont.)

- An n-bit unsigned integer represents \(2^n\) values:
 - from 0 to \(2^n-1\).

\[
\begin{array}{c|c|c|c}
2^n & 2^{n-1} & 2^0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 1 & 1 \\
\end{array}
\]
Two's Complement

- Problems with sign-magnitude, 1’s complement
 - two representations of zero (+0 and –0)
 - arithmetic circuits are complex
 - How to add two sign-magnitude numbers?
 - e.g., try 2 + (-3)
 - How to add to one's complement numbers?
 - e.g., try 4 + (-3)

Two’s Complement Representation

- If number is positive or zero,
 - normal binary representation, zeroes in upper bit(s)
- If number is negative,
 - start with positive number
 - flip every bit (i.e., take the one’s complement)
 - then add one

\[
\begin{array}{c}
00101 & (5) \\
11010 & (1's\ comp) \\
+ & 1 \\
11011 & (-5) \\
\end{array} \quad \begin{array}{c}
01001 & (9) \\
11101 & (1's\ comp) \\
+ & 1 \\
1001000 & (-9) \\
\end{array}
\]

Two’s Complement Shortcut

- To take the two’s complement of a number:
 - copy bits from right to left until (and including) first “1”
 - flip remaining bits to the left

\[
\begin{array}{c}
011010000 & \quad 011010000 \\
100101111 & (1's\ comp) \quad (flip) \\
+ & 1 \quad (copy) \\
100110000 & \quad 100110000 \\
\end{array}
\]
Two's Complement Signed Integers

- MS bit is sign bit – it has weight \(-2^{n-1}\).
- Range of an \(n\)-bit number: \(-2^{n-1}\) through \(2^{n-1} - 1\).
 - The most negative number has no positive counterpart.

<table>
<thead>
<tr>
<th>(-2^2)</th>
<th>(2^2)</th>
<th>(2^1)</th>
<th>(2^0)</th>
<th>(-2^2)</th>
<th>(2^2)</th>
<th>(2^1)</th>
<th>(2^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s complement to get a positive number.
2. Add powers of 2 that have “1” in the corresponding bit positions.
3. If original number was negative, add a minus sign.

\[X = \text{01101000}_\text{two} \]
\[= 2^4 + 2^5 + 2^3 = 64 + 32 + 8 \]
\[= \text{104}_\text{ten} \]

Assuming 8-bit 2’s complement numbers.

Converting Decimal to Binary (2’s C)

- First Method: Division
1. Find magnitude of decimal number.
2. Divide by two – remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a leading 0. If original was negative, take two’s complement.

<table>
<thead>
<tr>
<th>(X) = \text{104}_\text{ten}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(104\div2 = 52)</td>
</tr>
<tr>
<td>(52\div2 = 26)</td>
</tr>
<tr>
<td>(26\div2 = 13)</td>
</tr>
<tr>
<td>(13\div2 = 6)</td>
</tr>
<tr>
<td>(6\div2 = 3)</td>
</tr>
<tr>
<td>(3\div2 = 1)</td>
</tr>
<tr>
<td>(1\div2 = 0)</td>
</tr>
</tbody>
</table>

\[X = \text{01101000}_\text{two} \]
Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit; if original was negative, take two’s complement.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(c^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
X &= 104_{\text{ten}} \\
&= 10101000_{\text{two}} \\
&= 01101000_{\text{two}}
\end{align*}
\]

Operations: Arithmetic and Logical

- Recall: data types include representation and operations.
- 2’s complement is a good representation for signed integers, now we need arithmetic operations:
 - Addition (including overflow)
 - Subtraction
 - Sign Extension
- Multiplication and division can be built from these basic operations.
- Logical operations are also useful:
 - AND
 - OR
 - NOT

Addition

- As we’ve discussed, 2’s comp. addition is just binary addition.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that sum fits in n-bit 2’s comp. representation

\[
\begin{align*}
01101000 &\text{ (104)} + 11110110 &\text{ (-10)} \\
+ 01011000 &\text{ (-16)} &\text{ (98)} \\
\hline
11110000 &\text{ (-18)} &\text{ (-9)}
\end{align*}
\]

Assuming 8-bit 2’s complement numbers.

Subtraction

- Negate second operand, then add.
 - assume all integers have the same number of bits
 - ignore carry out
 - for now, assume that difference fits in n-bit 2’s comp. representation

\[
\begin{align*}
01101000 &\text{ (104)} - 00010000 &\text{ (16)} \\
01101000 &\text{ (104)} + 11110000 &\text{ (-16)} \\
\hline
01011000 &\text{ (88)} &\text{ (-1)}
\end{align*}
\]

Assuming 8-bit 2’s complement numbers.
Sign Extension

To add two numbers, we must represent them with the same number of bits.

If we just pad with zeroes on the left:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 (4)</td>
<td>00000100 (still 4)</td>
</tr>
<tr>
<td>1100 (-4)</td>
<td>00011100 (12, not -4)</td>
</tr>
</tbody>
</table>

Instead, replicate the MS bit -- the sign bit:

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 (4)</td>
<td>00000100 (still 4)</td>
</tr>
<tr>
<td>1100 (-4)</td>
<td>11111100 (still -4)</td>
</tr>
</tbody>
</table>

Overflow

If operands are too big, then sum cannot be represented as an n-bit 2's comp number.

<table>
<thead>
<tr>
<th>4-bit</th>
<th>8-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 (8)</td>
<td>11000 (-8)</td>
</tr>
<tr>
<td>+01001 (9)</td>
<td>+10111 (-9)</td>
</tr>
<tr>
<td>10001 (-15)</td>
<td>01111 (+15)</td>
</tr>
</tbody>
</table>

We have overflow if:

- signs of both operands are the same, and
- sign of sum is different.

Another test -- easy for hardware:

- carry into MS bit does not equal carry out

Logical Operations

Operations on logical TRUE or FALSE

- two states -- takes one bit to represent: TRUE=1, FALSE=0

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A AND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A OR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>NOT A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

View n-bit number as a collection of n logical values

- operation applied to each bit independently

Examples of Logical Operations

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A AND B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A OR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>NOT A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

AND

- useful for clearing bits
- AND with zero = 0
- AND with one = no change

OR

- useful for setting bits
- OR with zero = no change
- OR with one = 1

NOT

- unary operation -- one argument
- flips every bit
Hexadecimal Notation

- It is often convenient to write binary (base-2) numbers in hexadecimal (base-16) instead.
 - fewer digits - four bits per hex digit
 - less error prone - no long string of 1's and 0's

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>

Converting from Binary to Hexadecimal

- Every four bits is a hex digit.
 - start grouping from right-hand side

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>1111</td>
<td>F</td>
<td>15</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Fractions: Fixed-Point

- How can we represent fractions?
 - Use a “binary point” to separate positive from negative powers of two -- just like “decimal point.”
 - 2’s comp addition and subtraction still work (if binary points are aligned)

\[
2^1 = 0.5 \\
2^2 = 0.25 \\
2^3 = 0.125
\]

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101000.101</td>
<td></td>
<td>(40.625)</td>
</tr>
<tr>
<td>+ 11111110.110</td>
<td></td>
<td>(-1.25)</td>
</tr>
<tr>
<td>00100111.011</td>
<td></td>
<td>(39.375)</td>
</tr>
</tbody>
</table>

No new operations -- same as integer arithmetic.

Very Large and Very Small: Floating-Point

- Large values: 6.023×10^{23} -- requires 79 bits
- Small values: 6.626×10^{-34} -- requires >110 bits
- Use equivalent of “scientific notation”: $F \times 2^E$
- Must have F (fraction), E (exponent), and sign.
- IEEE 754 Floating-Point Standard (32-bits):

\[
N = (-1)^S \times 1.fraction \times 2^{exponent - 127}, 1 \leq exponent \leq 254
\]

\[
N = (-1)^S \times 0.fraction \times 2^{-126}, \text{exponent} = 0
\]
Floating Point Example

- Single-precision IEEE floating point number:
 - 0 01111110 10000000000000000000000

 - Sign is 1 – number is negative.
 - Exponent field is 01111110 = 126 (decimal).
 - Fraction is 1.10000000000… = 1.5 (decimal).

 Value = -1.5 x 2\(^{126-127}\) = -1.5 x 2\(^{-1}\) = -0.75

Floating-Point Operations

- Will regular 2's complement arithmetic work for Floating Point numbers?
 - (Hint: In decimal, how do we compute \(3.07 \times 10^{12} + 9.11 \times 10^{8}\)?)

Text: ASCII Characters

- ASCII: Maps 128 characters to 7-bit code.
 - printable and non-printable (ESC, DEL, ...) characters
 - if (c >= 65 && c <= 90) … \\
 - if (c >= 'A' && c <= 'Z') … \\
 - if ('A' <= c && c <= 'Z') …
Interesting Properties of ASCII Code

- What is the relationship between a decimal digit (‘0’, ‘1’, …) and its ASCII code?
- What is the difference between an upper-case letter (‘A’, ‘B’, …) and its lower-case equivalent (‘a’, ‘b’, …)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough?

(\text{http://www.unicode.org/})

No new operations needed for ASCII codes – integer arithmetic and logic are sufficient.

Other Data Types

- Text strings
 - array of characters, terminated with null character (‘\0’)
 - typically, no hardware support
- Image
 - array of pixels
 - monochrome: one bit (0/1 = black/white)
 - color: red, green, blue (RGB) components
 - other properties: transparency
 - hardware support:
 - typically none, in general-purpose processors
 - MMX -- multiple 8-bit operations on 32-bit word
- Sound
 - sequence of fixed-point numbers

LC-3 Data Types

- Some data types are supported directly by the instruction set architecture.
- For LC-3, there is only one hardware-supported data type:
 - 16-bit 2’s complement signed integer
 - Operations: ADD, AND, NOT
- Other data types are supported by interpreting 16-bit values as logical, text, fixed-point, floating-point, etc., in the software that we write.