

Chapter2 Bits, Data Types, and Operations

Original slides from Gregory Byrd, North Carolina State University
Modified slides by Chris Wilcox, Andres Calderon J. and Sanjay Rajopadhye Colorado State University

How do we represent data in a computer?

- At the lowest level, a computer is an electronic machine.
- works by controlling the flow of electrons
- Easy to recognize two conditions:

1. presence of a voltage - we'll call this state " 1 "
2. absence of a voltage - we'll call this state " 0 "

- Could base state on value of voltage, but control and detection circuits more complex.
- compare turning on a light switch to measuring or regulating voltage

Computer is a binary digital system.

- Basic unit of information is the binary digit, or bit.
- Values with >2 states require multiple bits.
- A collection of two bits has four possible states: $00,01,10,11$
- A collection of three bits has eight possible states: $000,001,010,011,100,101,110,111$
- A collection of n bits has 2^{n} possible states.

What kinds of data do we need to represent?

- Numbers - signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Text - characters, strings, ...
- Logical - true, false
- Images - pixels, colors, shapes, ...
- Sound - wave forms
- Instructions
- ...
- Data type:
- representation and operations within the computer - We'll start with numbers...

Unsigned Integers

- Non-positional notation
- could represent a number (" 5 ") with a string of ones ("11111")
- problems?
- Weighted positional notation
- like decimal numbers: "329"
- " 3 " is worth 300 , because of its position, while " 9 " is only worth 9

Unsigned Binary Arithmetic

- Base-2 addition - just like base-10!
- add from right to left, propagating carry

Subtraction, multiplication, division: remember integer math!

Unsigned Integers (cont.)

- An n-bit unsigned integer represents 2^{n} values: from 0 to 2^{n-1}.

2^{2}	2^{1}	2^{0}	
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7
cs270-Fall Semester 2016			

Signed Integers

- With n bits, we have 2^{n} distinct values.
- assign about half to positive integers (1 through $2^{n-1}-1$)
- assign about half to negative (- $2^{n-1}-1$ through -1)
- that leaves two values: one for 0 , and one extra
- Positive integers
- just like unsigned - zero in most significant (MS) bit 00101 = 5
- Negative integers
- sign-magnitude - set sign bit to show negative $10101=-5$
- One's complement - flip every bit to represent negative $11010=-5$
- in either case, MS bit indicates sign: 0=pos., $1=$ neg

Two's Complement

- Problems with sign-magnitude, 1's complement
- two representations of zero (+0 and -0)
- arithmetic circuits are complex
-How to add two sign-magnitude numbers?
- e.g., try $2+(-3)$
-How to add to one's complement numbers?
- e.g., try $4+(-3)$

Two's Complement

- Two's complement representation developed to make circuits easy for arithmetic.
- for each positive number (X), assign value to its negative $(-X)$, such that $X+(-X)=0$ with "normal" addition, ignoring carry out

00101	(5)	
$+\quad 11011$	(-5)	
00000	(0)	+
00000	(0)	

Two's Complement Representation

- If number is positive or zero,
- normal binary representation, zeroes in upper bit(s)
- If number is negative,
- start with positive number
- flip every bit (i.e., take the one's complement)
- then add one

CS270 - Fall Semester 2016

Two's Complement Shortcut

- To take the two's complement of a number:
- copy bits from right to left until (and including) first " 1 "
- flip remaining bits to the left

Two's Complement Signed Integers

- MS bit is sign bit - it has weight -2^{n-1}.
- Range of an n-bit number: -2^{n-1} through $2^{n-1}-1$.
- The most negative number has no positive counterpart.

-2^{3}	2^{2}	2^{1}	2^{0}	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7

-2^{3}	2^{2}	2^{1}	2^{0}	
1	0	0	0	-8
1	0	0	1	-7
1	0	1	0	-6
1	0	1	1	-5
1	1	0	0	-4
1	1	0	1	-3
1	1	1	0	-2
1	1	1	1	-1

Converting Binary (2's C) to Decimal

1. If leading bit is one, take two's complement to get a positive number.
2. Add powers of 2 that have " 1 " in the corresponding bit positions.
3. If original number was negative, add a minus sign.
$X=01101000_{\text {two }}$
$=2^{6}+2^{5}+2^{3}=64+32+8$
$=104_{\text {ten }}$

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

Assuming 8-bit 2's complement numbers.
CS270 - Fall Semester 2016

More Examples

$$
\begin{aligned}
X & =00100111_{\text {two }} \\
& =2^{5}+2^{2}+2^{1}+2^{0}=32+4+2+1 \\
& =39_{\text {ten }}
\end{aligned}
$$

$$
\begin{aligned}
X & =11100110_{\text {two }} \\
-X & =00011010 \\
& =2^{4}+2^{3}+2^{1}=16+8+2 \\
& =26_{\text {ten }} \\
X & =-26_{\text {ten }}
\end{aligned}
$$

n	2^{n}
0	1
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1024

[^0]- First Method: Division

1. Find magnitude of decimal number.
2. Divide by two - remainder is least significant bit.
3. Keep dividing by two until answer is zero,
writing remainders from right to left.

$X=104_{\text {ten }}$	
$104 \div 2=52$	104\%2 $=$
$52 \div 2=26$	$52 \% 2=$
$26 \div 2=13$	$26 \% 2=$
$13 \div 2=6$	13\%2
$6 \div 2=3$	6\%2
$3 \div 2=1$	$3 \% 2=1$
$1 \div 2=0$	$182=$
X = 0110	000 two

4. Append a leading 0 . If original was negative, take two's complement.

Converting Decimal to Binary (2's C)

- Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit; if original was negative, take two's complement.

Copyrign © The MGeraw.till Companies, Inc. Pemisision reauired tor reproducition or display.
 Addition

- As we've discussed, 2's comp. addition is just binary addition.
- assume all integers have the same number of bits
- ignore carry out
- for now, assume that sum fits in n-bit 2's comp. representation

$$
\begin{array}{r}
01101000(104) \\
+\quad 11110000(-16)+\longrightarrow(-10) \\
\hline 01011000(98)
\end{array}
$$

[^1]\qquad

Operations: Arithmetic and Logical

- Recall: data types include representation and operations.
- 2's complement is a good representation for signed integers, now we need arithmetic operations:
- Addition (including overflow)
- Subtraction
- Sign Extension
- Multiplication and division can be built from these basic operations.
- Logical operations are also useful:
- AND
- OR
- NOT

Copyrigh © The Mocraw.-Ha Comparies, Inc. Peemisision required tor reproduction ord dsplay.

Subtraction

- Negate second operand, then add.
- assume all integers have the same number of bits
- ignore carry out
- for now, assume that difference fits in n-bit 2's comp. representation

Assuming 8-bit 2's complement numbers.
\qquad

Sign Extension

- To add two numbers, we must represent them with the same number of bits.
- If we just pad with zeroes on the left:

4-bit	8-bit
0100 (4)	00000100 (still 4)
1100 (-4)	00001100 (12, not-4)

- Instead, replicate the MS bit -- the sign bit:

$\underline{\text { 4-bit }}$	$\underline{8-b i t}$		
0100	(4)	$\underline{0000100}$	(still 4)
1100	(-4)	11111100	(still -4)

Logical Operations

- Operations on logical TRUE or FALSE
- two states -- takes one bit to represent: TRUE=1, FALSE=0

A B	A AND B	A	B	AORB	A	NOTA
00	0	0	0	0	0	1
01	0	0	1	1	1	0
10	0	1	0	1		
11	1	1	1	1		

- View n-bit number as a collection of n logical values - operation applied to each bit independently

Overflow

- If operands are too big, then sum cannot be represented as an n-bit 2's comp number.

01000	(8)	11000
+01001	(9)	
10001	(-15)	+10111
01111	$(+9)$	
$(+15)$		

- We have overflow if:
- signs of both operands are the same, and
- sign of sum is different.
- Another test -- easy for hardware:
- carry into MS bit does not equal carry out

Examples of Logical Operations

 11000101- AND
- useful for clearing bits 00000101

$$
\text { -AND with zero }=0
$$

-AND with one = no change - OR

- useful for setting bits 11000101
OR $\quad 00001111$ -OR with zero = no change -OR with one $=1$
- NOT NOT 11000101
- unary operation -- one argument 00111010
- flips every bit

Hexadecimal Notation

- It is often convenient to write binary (base-2) numbers in hexadecimal (base-16) instead.
- fewer digits - four bits per hex digit
- less error prone - no long string of 1's and 0's

Binary	Hex	Decimal	Binary	Hex	Decimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	A	10
0011	3	3	1011	B	11
0100	4	4	1100	C	12
0101	5	5	1101	D	13
0110	6	6	1110	E	14
0111	7	7	1111	F	15
CS270 - Fall Semester 2016					

Converting from Binary to Hexadecimal

- Every four bits is a hex digit.
- start grouping from right-hand side

This is not a new machine representation, just a convenient way to write the number.

Copyrign © The McGraw.till Companies, Inc. Pemmission required tor reproduccion or display.

Fractions: Fixed-Point

- How can we represent fractions?
- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2 's comp addition and subtraction still work (if binary points are aligned)

00101000.101 (40.625)
+ 11111110.110 (-1.25) 00100111.011 (39.375)

No new operations -- same as integer arithmetic.

Very Large and Very Small: FloatingPoint

- Large values: 6.023×10^{23}-- requires 79 bits - Small values: 6.626×10^{-34}-- requires >110 bits - Use equivalent of "scientific notation": $\mathrm{F} \times 2^{\mathrm{E}}$ - Must have F (fraction), E (exponent), and sign. - IEEE 754 Floating-Point Standard (32-bits):

$N=(-1)^{S} \times 1$.fraction $\times 2^{\text {exponent }-127}, 1 \leq$ exponent ≤ 254 $N=(-1)^{S} \times 0$.fraction $\times 2^{-126}$, exponent $=0$

Floating Point Example

- Single-precision IEEE floating point number:
- $1 \underline{01111110} \underline{10000000000000000000000}$

- Sign is 1 - number is negative.
- Exponent field is $01111110=126$ (decimal).
- Fraction is $1.100000000000 \ldots=1.5$ (decimal).
- Value $=-1.5 \times 2^{(126-127)}=-1.5 \times 2^{-1}=-0.75$

Text: ASCII Characters

- ASCII: Maps 128 characters to 7-bit code.
- printable and non-printable (ESC, DEL, ...) characters

		20 sp	30	0					P				p
01	11 dc 12	21	31	1	41	A	51		Q	61	a		q
02	12 dc 22	22	32	2	42	B	52		R	62	b	72	r
03	13 dc 32	23	33	3	43	C	5		S	63	c	73	S
04 eot	14 dc 42	24	34	4	44	D	54		T	64	d	74	
5	15 nak 2	25	35	5	45	E	55		U	65	e	75	u
06 ack	16 syn 2	26	36	6	46	F	56		V	6	1	76	
el	17 etb 2	27	37	7	47	G	57		W	67	g		
08 bs	18 can 2	28	38	8	48	H	58		x	68	h	78	x
09	19	29	39	9	49	I	59		Y	69	i		y
0 a nl	1 a sub 2	2a	3 a		4 a	J	5		Z	6	j	7 a	
Ob	1 b esc 2	2 b	3b	;	4 b	K	5		[b	k	7 b	
Oc np	1 c fs 2	2 c	3 c	<	4 c	L			1	6	1		
Od	1 d gs 2	2d	3 d		4 d	M							
0 e so	1e rs 2	2 e	3 e		$4 e$		5		,		n		
si	1f us/2	2 f	3 f		4 f					$6 f$			

Text: ASCII Characters

- ASCII is a seven-bit code. "Eight-bit ASCII" makes as sense as a square circle.
- There is no need to memorize the ASCII chart.
- There is no need to insert ASCII values into a program.
- if (c>= $65 \& \& c<=90$) ... // just showing off
- if ($c>=$ 'A' \& \& c <= 'Z') ... // easy to understand
- if ('A' <= c \& \& c<= 'Z') ... // I like this even more

Interesting Properties of ASCII Code

- What is relationship between a decimal digit (' 0 ', ' 1 ', ...) and its ASCII code?
- What is the difference between an upper-case letter ('A', 'B', ...) and its lower-case equivalent ('a', 'b', ...)?
- Given two ASCII characters, how do we tell which comes first in alphabetical order?
- Are 128 characters enough?
(http://www.unicode.org/)
No new operations needed for ASCII codes -
integer arithmetic and logic are sufficient.
CS270 - Fall Semester 2016

LC-3 Data Types

- Some data types are supported directly by the instruction set architecture.
- For LC-3, there is only one hardware-supported data type:
- 16-bit 2's complement signed integer
- Operations: ADD, AND, NOT
- Other data types are supported by interpreting 16-bit values as logical, text, fixed-point, floatingpoint, etc., in the software that we write.

[^0]: Assuming 8-bit 2's complement numbers.

[^1]: Assuming 8-bit 2's complement numbers.

