
1

Chapter 12

Variables and

Operators

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox, Andres

Calderon J. and Sanjay Rajopadhye

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Basic C Elements

Variables

 named, typed data items

Operators

 predefined actions performed on data items

 combined with variables to form expressions,

statements

Rules and usage

Implementation using LC-3 instructions

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Data Types

C has three basic data types

int integer (at least 16 bits)

double floating point (at least 32 bits)

char character (at least 8 bits)

Exact size can vary, depending on processor

 int is supposed to be “natural” integer size, for LC-

3 that’s 16 bits, LC-3 does not have double

 int on a modern processor is usually 32 bits,

double is usually 64 bits

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Variable Names: Rules

Any combination of letters, numbers, and

underscore (_)

Case matters

 “sum” is different than “Sum”, “printf” is not “Printf”,

and “while” is not “WHILE”.

Cannot begin with a number

 usually variables beginning with underscore

are used only in special library routines

Restricted length?

 compiler dependent, older implementations

recognized as few as 31 characters

4

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Variable Names: Customs

Separate words with underscores (big_dog)

or CamelCase (bigDog)

Lowercase for variables (buffer)

All caps for constants (BUFFER_LENGTH),

whether via #define or const

Capitalized for structures (struct Packet)

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Examples

Legal

i

wordsPerSecond

words_per_second

_green

aReally_longName_moreThan31chars

aReally_longName_moreThan31characters

Illegal

10sdigit

ten'sdigit

done?

double

reserved keyword

same identifier

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Literals
Integer
123 // decimal

-0123 // octal (leading 0)

0x123 // hexadecimal (0x)

Floating point
6.023 // double

6.023e23 // double, 6.023 x 1023

5E12f // float, 5.0 x 1012

Character
'c'

'\n' // newline

'\xA' // character code 10 (0xA)

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Scope: Global and Local

Where is the variable accessible?

Global: accessed anywhere in program

Local: only accessible in a particular region

Compiler infers scope from where variable is
declared in the program

 programmer doesn’t have to explicitly state

Variable is local to the block in which it is declared
 block defined by open and closed braces { }

 can access variable declared in any “containing” block

 global variables are declared outside all blocks

8

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example
#include <stdio.h>
int itsGlobal = 0;

int main()
{
int itsLocal = 1; /* local to main */
printf("Global %d Local %d\n", itsGlobal, itsLocal);
{
int itsLocal = 2; /* local to this block */
itsGlobal = 4; /* change global variable */
printf("Global %d Local %d\n", itsGlobal, itsLocal);

}
printf("Global %d Local %d\n", itsGlobal, itsLocal);

}

Output

Global 0 Local 1
Global 4 Local 2
Global 4 Local 1

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Operators

Programmers manipulate variables using the

operators provided by the high-level language.

Variables and operators combine to form

expressions and statements.

These constructs denote the work to be done by

the program.

Each operator may correspond to many

machine instructions.

 Example: The multiply operator (*) typically requires

multiple LC-3 ADD instructions.

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Expression

Any combination of variables, constants,

operators, and function calls

 every expression has a type, derived from the types

of its components (according to C typing rules)

Examples:

 counter >= STOP

 x + sqrt(y)

 x & z + 3 || 9 - w-- % 6

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Statement

Expresses a complete unit of work

 executed in sequential order

Simple statement ends with semicolon

 z = x * y; /* assign product to z */

 y = y + 1; /* after multiplication */

 ; /* null statement */

Compound statement groups simple statements

using braces.

 syntactically equivalent to a simple statement

 { z = x * y; y = y + 1; }

12

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Operators
Three things to know about each operator:

(1) Functionality

 what does the operator do?

(2) Precedence

 in which order are operators combined?

 Example: a * b + c * d is the same as (a * b) + (c * d)

since multiply has higher precedence than addition

(3) Associativity

 in which order are operators of the same precedence

combined?

 Example: a - b - c is the same as (a - b) - c

because add and subtract associate left-to-right
13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Assignment Operator

Changes the value of a variable.

x = x + 4;

1. Evaluate right-hand side.

2. Set value of left-hand side variable to result.

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Assignment Operator

All expressions evaluate to a value,

even ones with the assignment operator.

For assignment, the result is the value assigned.

 usually (but not always) the value of right-hand side

 type conversion might make assigned value

different than computed value

Assignment associates right to left.

y = x = 3;

 y gets the value 3, because (x = 3) evaluates to the value 3.

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Arithmetic Operators

All associate left to right.

* / % have higher precedence than + -.

Full precedence chart on page 602 of textbook

Symbol Operation Usage Precedence Assoc

* multiply x * y 6 l-to-r

/ divide x / y 6 l-to-r

% modulo x % y 6 l-to-r

+ add x + y 7 l-to-r

- subtract x - y 7 l-to-r

16

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Arithmetic Expressions

If mixed types, smaller type is “promoted” to

larger.

x + 4.3

 if x is int, converted to double and result is double

Integer division—fraction is dropped.

x / 3

 if x is int and x=5, result is 1 (not 1.666666...)

Modulo—result is remainder.

x % 3

 if x is int and x=5, result is 2.
17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Bitwise Operators

Operate on variables bit-by-bit.
 Like LC-3 AND and NOT instructions.

Shift operations are logical (not arithmetic).
 Operate on values -- neither operand is changed.

Symbol Operation Usage Precedence Assoc

~ bitwise NOT ~x 4 r-to-l

<< left shift x << y 8 l-to-r

>> right shift x >> y 8 l-to-r

& bitwise AND x & y 11 l-to-r

^ bitwise XOR x ^ y 12 l-to-r

| bitwise OR x | y 13 l-to-r

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Logical Operators

Treats entire variable (or value) as TRUE (non-zero) or

FALSE (zero).

Result of a logcial operation is always either TRUE (1)

or FALSE (0).

Symbol Operation Usage Precedence Assoc

! logical NOT !x 4 r-to-l

&& logical AND x && y 14 l-to-r

|| Logical OR x || y 15 l-to-r

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Relational Operators

Result is 1 (TRUE) or 0 (FALSE).

Note: Don’t confuse equality (==) with assignment (=)!

Symbol Operation Usage Precedence Assoc

> greater than x > y 9 l-to-r

>= greater or equal x >= y 9 l-to-r

< less than x < y 9 l-to-r

< less or equal x <= y 9 l-to-r

== equals x == y 10 l-to-r

!= not equals x != y 10 l-to-r

20

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Special Operators: ++ and --

Changes value of variable before (or after)

its value is used in an expression.

 Pre: Increment/decrement variable before using its value.

 Post: Increment/decrement variable after using its value.

Symbol Operation Usage Precedence Assoc

++ postincrement x++ 2 r-to-l

-- postdecrement x-- 2 r-to-l

++ preincrement --x 3 r-to-l

-- predecrement ++x 3 r-to-l

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Using ++ and --

x = 4;

y = x++;

Results: x = 5, y = 4

(because x is incremented after yielding a value)

x = 4;

y = ++x;

Results: x = 5, y = 5

(x is incremented before yielding a value)

22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Practice with Precedence
Assume a=1, b=2, c=3, d=4.

x = a * b + c * d / 2; /* x = 8 */

same as:

x = (a * b) + ((c * d) / 2);

For long or confusing expressions,

use parentheses, because reader might not have
memorized precedence table.

Note: Assignment operator has lowest precedence,

so operations on the right-hand side are evaluated

before assignment.

23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Special Operator: Conditional

If x is TRUE (non-zero), result is y; else, result is z.

Like a MUX, with x as the select signal.

x

y z

1 0

Symbol Operation Usage Precedence Assoc

? : conditional x?y:z 16 l-to-r

24

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Undefined Behavior

int a;

int b=5, c = b * ++b;

int d=8, e = d++ * d++;

int f=7; f = f++;

int g=3; printf("%d %d\n", ++g, ++g);

int alpha() { printf("alpha"); return 1; }

int beta() { printf("beta"); return 1; }

int gamma = alpha()+beta();

Experimentation proves nothing!

25

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Special Operators: +=, *=, etc.
Arithmetic and bitwise operators can be combined
with assignment operator.
Statement Equivalent assignment
x += y; x = x + y;

x -= y; x = x - y;

x *= y; x = x * y;

x /= y; x = x / y;

x %= y; x = x % y;

x &= y; x = x & y;

x |= y; x = x | y;

x ^= y; x = x ^ y;

x <<= y; x = x << y;

x >>= y; x = x >> y;

All have same
precedence and

associativity as =
and associate

right-to-left.

26

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Symbol Table

Like assembler, compiler needs to know

information associated with identifiers

 in assembler, all identifiers were labels

and information is address

Compiler keeps more information

 Name (identifier)

 Type

 Location in memory

 Scope

Name Type Offset Scope

amount

hours

minutes

rate

seconds

time

int

int

int

int

int

int

0

-3

-4

-1

-5

-2

main

main

main

main

main

main

27

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Allocating Space for Variables

Global data section
 All global variables stored here

R4 points to beginning

Run-time stack
 Used for local variables

 R6 points to top of stack

 R5 points to top frame on stack

 New frame for each block

(goes away when block exited)

Offset = distance from beginning

of storage area
 Global: LDR R1, R4, #4

 Local: LDR R2, R5, #-3

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6

R5

28

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Local Variable Storage

Local variables are stored in an

activation record, also known as a stack frame.

Symbol table “offset” gives the

distance from the base of the frame.

 R5 is the frame pointer – holds address

of the base of the current frame.

 A new frame is pushed on the run-time

stack each time a block is entered.

 Because stack grows downward,

base is the highest address of the frame,

and variable offsets are <= 0.

seconds

minutes

hours

time

rate

amountR5

29

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Variables and Memory Locations

In our examples, a variable is always stored in

memory.

When assigning to a variable, must store to

memory location.

A real compiler would perform code optimizations

that try to keep variables allocated in registers.

Why?

30

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example: Compiling to LC-3
#include <stdio.h>
int inGlobal;

int main()
{

int inLocal; /* local to main */
int outLocalA;
int outLocalB;

/* initialize */
inLocal = 5;
inGlobal = 3;

/* perform calculations */
outLocalA = inLocal++ & ~inGlobal;
outLocalB = (inLocal + inGlobal) - (inLocal -
inGlobal);

/* print results */
printf("The results are: outLocalA = %d, outLocalB
= %d\n", outLocalA, outLocalB);

}

31

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

CS270 - Fall Semester 2016

Example: Symbol Table

Name Type Offset Scope

inGlobal int 0 global

inLocal int 0 main

outLocalA int -1 main

outLocalB int -2 main

32

