
1

Chapter 16

Pointers and Arrays

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox,

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Fall Semester 2016

Pointers and Arrays
C Pointers and arrays - later we’ll see examples of

both of these in our LC-3 programs:

Pointer

 Address of a variable in memory

 Allows us to indirectly access variables

• in other words, we can talk about its address

rather than its value

Array
 A list of values arranged sequentially in memory

 Example: a list of numbers

 array[4] refers to the 5th element of the array array

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Fall Semester 2016

Address vs. Value
Sometimes we need the address of a memory

location, instead of the value it contains, e.g.

int array[] = {1234, 2345, 3456, 4567, 5678, 6789 };

address value

7FFF0100 1234

7FFF0104 2345

7FFF0108 3456

7FFF010C 4567

7FFF0110 5678

7FFF0114 6789

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4CS270 - Fall Semester 2016

Another Need for Addresses

Consider the following function that's supposed

to swap the values of its arguments.

void Swap(int firstVal, int secondVal)

{

int tempVal = firstVal;

firstVal = secondVal;

secondVal = tempVal;

}

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Fall Semester 2016

Pointers in C

C has explicit syntax for representing addresses

– we can talk about and manipulate pointers

as variables and in expressions.

 Declaration

int *p; /* p is a pointer to an int */

float *p; /* p is a pointer to an float */

A pointer in C points to a particular data type:
int*, double*, char*, etc.

 Operators

*p -- returns the value pointed to by p

&z -- returns the address of variable z

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Fall Semester 2016

Example

int i;

int *ptr;

i = 4;

ptr = &i;

*ptr = *ptr + 1;

store the value 4 into the memory location

associated with i

store the address of i into the

memory location associated with ptr

read the contents of memory

at the address stored in ptr
store the result into memory

at the address stored in ptr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Fall Semester 2016

Pointers as Arguments

Passing a pointer into a function allows the

function to read/change memory outside its

activation record.

void NewSwap(int *firstVal, int *secondVal)

{

int tempVal = *firstVal;

*firstVal = *secondVal;

*secondVal = tempVal;

}

Arguments are

integer pointers.

Caller passes addresses

of variables that it wants

function to change.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Fall Semester 2016

Null Pointer

Sometimes we want a pointer that points to

nothing.

In other words, we declare a pointer, but we’re

not ready to actually point to something yet.

int *p;

p = NULL; /* p is a null pointer */

NULL is a predefined macro that contains a

value that a non-null pointer should never hold.

 NULL =usually equals 0, because address 0 is not a

legal address for most programs on most platforms.

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Fall Semester 2016

Using Arguments for Results

Pass address of variable where you want result

stored

 useful for multiple results

 Example:

• return value via pointer

• return status code as function result

This solves the mystery of why ‘&’ with

argument to scanf:

scanf("%d ", &dataIn);

read a decimal integer

and store in dataIn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Fall Semester 2016

Syntax for Pointer Operators

Declaring a pointer

type *var; or type* var;

 Either of these work -- whitespace doesn't matter

 Example: int* (integer pointer), char* (char pointer), etc.

Creating a pointer

&var

 Must be applied to a memory object, such as a variable (not &3)

Dereferencing

 Can be applied to any expression. All of these are legal:

*var // contents of memory pointed to by var

**var // contents of memory location pointed to

// by memory location pointed to by var

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Fall Semester 2016

Example using Pointers
IntDivide performs both integer division and

remainder, returning results via pointers.
 Returns –1 if divide by zero, else 0

int IntDivide(int x, int y, int *quoPtr, int *remPtr);

main()

{

int dividend, divisor; /* numbers for divide op */

int quotient, remainder; /* results */

int error;

/* ... Input code removed ... */

error = IntDivide(dividend, divisor,

"ient, &remainder);

/* ... Remaining code removed ... */

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Fall Semester 2016

C Code for IntDivide

int IntDivide(int x, int y, int *quoPtr, int *remPtr)

{

if (y != 0)

{

quoPtr = x / y; / quotient in *quoPtr */

remPtr = x % y; / remainder in *remPtr */

return 0;

}

else

return –1;

}

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Fall Semester 2016

Arrays

How do we allocate a group of memory
locations?
 character string

 table of numbers

How about this?

Not too bad, but…
 what if there are 100 numbers?

 how do we write a loop to process each number?

Fortunately, C gives us a better way -- the array.

int num[4];

 Declares a sequence of four integers, referenced by:
num[0], num[1], num[2], num[3].

int num0;

int num1;

int num2;

int num3;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Fall Semester 2016

Array Syntax

Declaration

type variable[num_elements];

Array Reference

variable[index];

all array elements

are of the same type

number of elements must be

known at compile-time

i-th element of array (starting with zero);

no limit checking at compile-time or run-time

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Fall Semester 2016

Array as a Local Variable

Array elements are allocated

as part of the activation

record.

int grid[10];

First element (grid[0])

is at lowest address

of allocated space.

If grid is first variable

allocated, then R5 will point to
grid[9].

grid[0]

grid[1]

grid[2]

grid[3]

grid[4]

grid[5]

grid[6]

grid[7]

grid[8]

grid[9]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Fall Semester 2016

Passing Arrays as Arguments
C passes arrays by reference
 the address of the array (i.e., of the first element)

is written to the function's activation record

 otherwise, would have to copy each element

main() {

int numbers[MAX_NUMS];

…

mean = Average(numbers);

…

}

int Average(int inputValues[]) {

…

for (index = 0; index < MAX_NUMS; index++)

sum = sum + indexValues[index];

return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Fall Semester 2016

A String is an Array of Characters

Allocate space for a string like any other array:

char outputString[16];

Space for string must contain room for terminating
zero.

Special syntax for initializing a string:

char outputString[16] = "Result = ";

…which is the same as:

outputString[0] = 'R';

outputString[1] = 'e';

outputString[2] = 's';

...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Fall Semester 2016

I/O with Strings

Printf and scanf use "%s" format character for

string

 Printf -- print characters up to terminating zero

printf("%s", outputString);

 Scanf -- read characters until whitespace,

store result in string, and terminate with zero

scanf("%s", inputString);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Fall Semester 2016

Relationship between Arrays and

Pointers

An array name is essentially a pointer to the first

element in the array

char word[10];

char *cptr;

cptr = word; /* points to word[0] */

Difference:

 Can change the contents of cptr, as in

cptr = cptr + 1;

Why? Because the identifier "word" is not a

variable.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Fall Semester 2016

Correspondence between Ptr and

Array Notation

Given the declarations on the previous page,

each line below gives three equivalent

expressions:

cptr word &word[0]

(cptr + n) word + n &word[n]

*cptr *word word[0]

*(cptr + n) *(word + n) word[n]

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Fall Semester 2016

Common Pitfalls with Arrays in C

Overrun array limits

 There is no checking at run-time or compile-time

to see whether reference is within array bounds.

int array[10];

int i;

for (i = 0; i <= 10; i++) array[i] = 0;

Declaration with variable size

 Size of array must be known at compile time.

void SomeFunction(int num_elements) {

int temp[num_elements];

…

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Fall Semester 2016

Pointer Arithmetic

Address calculations depend on size of elements

 To find the fourth element [3] of an integer array, we

need to add 12 bytes to the array address.

 For a double, we would have to add 24 bytes to access

the same element.

C does size calculations under the covers,

depending on size of item being pointed to:

double x[10];

double *y = x;

*(y + 3) = 13;

allocates 80 words, or

10 * sizeof(double)

same as x[3], base address plus

3 * sizeof(double)

