
11/28/2016

1

CS 270 Computer Organization

Fall 2016

Microarchitecture &

Register Transfer Notation

Sanjay Rajopadhye

Colorado State University

Microarchitecture

 Hardware components in a digital circuit or

system

 What they are

 How they are connected

Also called datapath

2

Main components

 (Combinational) logic

 Functions (adders, multipliers, shifters)

 MUXes

 Wiring

 Point-to-point

 Busses

 Storage

 Small scale storage (registers)

 Large scale storage (memory)

 Control (contains storage, logic and wiring)

3

Abstraction

 Logic and wiring are instantaneous

 Output is always a function of the values on input
wires

 If input changes, the change is “processed
immediately”

 Storage elements are timed

 Clock – a special signal that determines this timing

 Storage can be updated only at the tick of the clock

 What happens between ticks?

 The “current” values are processed by logic and
wiring to produce values …

 … that will be used to update at the “next tick”

4

11/28/2016

2

Combinational Logic

 A digital circuit that computes a function of
the inputs.

Examples:

 Adder: takes X and Y and produces X + Y

 AND: takes X and Y, produces bitwise and

 NOT: takes X and Y and produces ~X

 MUX: takes three inputs, X, Y and s (the last
one is 1-bit) and produces (note that this is C-
syntax, not the RTN that we will show later)
(s==0) ? X : Y

5

Wires and Busses

 Wires are (almost) just like electrical wires

 Directional (arrows)

 May have a “thickness:” number of bits of

data: e.g., the adder output is 16-bits in LC-3

 Busses:

 Shared wires

 Anyone can read at all times

 Write is via arbitration (control signals to

decide who gets to write on the bus)

6

Storage Elements

 Large scale storage (memory): view it like

an array

 Address + Data

 Small scale storage (registers):

 Programmer-visible registers: R0 … R7

 Special purpose registers:

 PC, IR, PSR (processor status register), MAR,

MDR

7

Memory

 Processor issues commands to memory, who responds
 Mem.EN (memory enable): hey, I’m talking to you

 Mem.RW: here’s what I want you to do

 Two special registers
 Memory Address Register (MAR): only processor writes to

this

 Memory Data Register (MDR): both processor/memory
can write to this
 the processor arbitrates

 If Mem.EN and if Mem.RW==0, (i.e.., read) the memory
copies the value at address MAR into the MDR,
otherwise copy the contents of MDR into Mem[MAR]
(Mem.EN && ~ Mem.RW) ? MDR Mem[MAR] :
((Mem.EN && Mem.RW) ? Mem[MAR] MDR)

8

11/28/2016

3

Registers

Every register

 is connected to some inputs

 has a special “load” signal

 If load signal is 1 at the next clock tick the

input is stored into the register

 Otherwise, no change in register contents

(LD.PC) ? PC PC+1

9

Register Transfer Notation

 Compact, “program-like” notation

 Describe what happens in the datapath

 One or more transfers per clock tick
 one line = one clock tick

 Two columns:
 Write the desired transfers

 List control signals to “effect the transfer”

 Let’s move on to LC3-Viz (special thanks, Joe
Arnett)

 Corrections
 BR uses IR[8:0] instead of IR[10:0] for the PC

offset

11

RTN/LC3-Viz Conventions

 Signals indicated must be asserted before the
clock tick in order for the indicated transfer to
occur. Sequence is:

 Signals are asserted

 Clock tick arrives, and causes the transfer

 In an RTN transfer, on either the right hand side
(rhs), or left hand side (lhs)

 Mem[x] is the memory at address x

 Mem[MAR] is the memory at address that is in
the MAR

 Reg[x] is Register number x

12

11/28/2016

4

RTN Conventions

 An RTN transfer is of the form:

LHS-location RHS-expression

 The LHSlocation may be a memory or a

specific register or the x-th register

 The RHS-expression is:

 named registers, e.g., Reg[3]

 memory locations e.g., Mem[MAR]

 simple expressions PC+1, Reg[src] + Reg[dst]

13

How does the LC-3 fetch an

instruction?

14

Transfer the PC into MAR
Cycle 1: MAR PC # LD.MAR, GatePC

Read memory; increment PC
Cycle 2: MDR Mem[MAR]; PC PC+1 # LD.MDR, MDR.SEL, MEM.EN,

LD.PC, PCMUX

Transfer MDR into IR
Cycle 3: IR MDR # LD.IR, GATEMDR

How does the LC-3 decode the

instruction?

15

Special decode step (controller makes decision, no clock cycle is
wasted since it only involves logic)

No visible signal is active

How does the LC-3 execute a

NOT instruction?

16

Src register contents are negated by ALU and result is stored in
dst register

Cycle 4: Reg[dst] ~Reg[src]; CC Sign(~Reg[src]) # LD.REG,
DR = dst,
GATEALU,
ALUK = ~,
SR1 = src,
LD.CC

11/28/2016

5

Other instructions

 Every instruction is a sequence of transfers

 Every one has the same first three cycles
(instruction fetch)

 Every one takes (at least one) additional cycle

 Some take even more more

 Each one effected by a specific set of control
signals

 The Controller is responsible for generating
the correct signals in the appropriate cycle

 Reminder
 Logic is instantaneous,

 Storage (transfers) are on clock ticks

17

