

Combinational Logic

A digital circuit that computes a function of the inputs.

Examples:

- Adder: takes X and Y and produces X + Y
- AND: takes X and Y, produces bitwise and
- NOT: takes X and Y and produces ~X
- MUX: takes three inputs, X, Y and s (the last one is 1-bit) and produces (note that this is Csyntax, not the RTN that we will show later) (s==0) ? X : Y

Colorado State University

- Wires are (almost) just like electrical wires
 Directional (arrows)
 - May have a "thickness:" number of bits of data: e.g., the adder output is 16-bits in LC-3
- Busses:
 - Shared wires
 - Anyone can read at all times
 - Write is via arbitration (control signals to decide who gets to write on the bus)

How does the LC-3 fetch an instruction?

Transfer the PC into MAR Cycle 1: MAR ← PC

LD.MAR, GatePC

Read memory; increment PC
Cycle 2: MDR ← Mem[MAR]; PC ← PC+1

LD.MDR, MDR.SEL, MEM.EN, LD.PC, PCMUX

Transfer MDR into IR Cycle 3: IR ← MDR

LD.IR, GATEMDR

Colorado State University 14

How does the LC-3 decode the instruction?

Special decode step (controller makes decision, no clock cycle is wasted since it only involves logic)

No visible signal is active

Colorado State University 15

How does the LC-3 execute a NOT instruction?

Src register contents are negated by ALU and result is stored in dst register

Cycle 4: Reg[dst] ← ~Reg[src]; CC ← Sign(~Reg[src]) # LD.REG, DR = dst, GATEALU, ALUK = ~, SR1 = src,

SR1 = s

Other instructions

- Every instruction is a sequence of transfers
 Every one has the same first three cycles (instruction fetch)
- Every one takes (at least one) additional cycle
- Some take even more more
- Each one effected by a specific set of control signals
- The Controller is responsible for generating the correct signals in the appropriate cycle
- Reminder
 - Logic is instantaneous,
 - Storage (transfers) are on clock ticks