
Chapter 16
Pointers and Arrays



16-2

Pointers and Arrays
We've seen examples of both of these
in our C programs; now we'll see how they are 
implemented  in LC-3.

Pointer
• Address of a variable in memory
• Allows us to indirectly access variables

Øin other words, we can talk about its address
rather than its value

Array
• A list of values arranged sequentially in memory
• Example: a list of telephone numbers
• Expression a[4] refers to the 5th element of the array a



16-3

Address vs. Value
Sometimes we want to deal with the address
of a memory location,
rather than the value it contains.

Recall example from Chapter 6:
adding a column of numbers.
• R2 contains address of first location.
• Read value, add to sum, and

increment R2 until all numbers
have been processed.

R2 is a pointer -- it contains the
address of data we’re interested in.

x3107
x2819
x0110
x0310
x0100
x1110
x11B1
x0019

x3100
x3101
x3102
x3103
x3104
x3105
x3106
x3107

x3100R2

address

value



16-4

Another Need for Addresses
Consider the following function that's supposed to
swap the values of its arguments.

void Swap(int firstVal, int secondVal)
{
int tempVal = firstVal;
firstVal = secondVal;
secondVal = tempVal;

}

With LC-3 implementation, we see why this does not work 
as intended.



16-5

Executing the Swap Function

firstVal
secondVal  

valueB 
valueA 

3
4
4 
3

R6

before call

tempVal 

firstVal
secondVal  

valueB 
valueA 

3

4
3
4 
3

R6

after call
These values
changed...

...but these
did not.

Swap needs addresses of variables outside its own
activation record.

Swap

main



16-6

Example
int i;
int *ptr;

i = 4;
ptr = &i;
*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the 
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr



16-7

Example: LC-3 Code
; i is 1st local (offset 0), ptr is 2nd (offset -1)
; i = 4;

AND  R0, R0, #0 ; clear R0
ADD  R0, R0, #4 ; put 4 in R0
STR  R0, R5, #0 ; store in i

; ptr = &i;
ADD  R0, R5, #0 ; R0 = R5 + 0 (addr of i)
STR  R0, R5, #-1 ; store in ptr

; *ptr = *ptr + 1;
LDR  R0, R5, #-1 ; R0 = ptr
LDR  R1, R0, #0 ; load contents (*ptr)
ADD  R1, R1, #1 ; add one
STR  R1, R0, #0 ; store result where R0 points



16-8

Pointers as Arguments
Passing a pointer into a function allows the function 
to read/change memory outside its activation record.

void NewSwap(int *firstVal, int *secondVal)
{
int tempVal = *firstVal;
*firstVal = *secondVal;
*secondVal = tempVal;

} Arguments are
integer pointers.

Caller passes addresses
of variables that it wants

function to change.



16-9

Passing Pointers to a Function
main() wants to swap the values of valueA and valueB
passes the addresses to NewSwap:

NewSwap(&valueA, &valueB);

Code for passing arguments:
ADD R0, R5, #-1 ; addr of valueB
ADD R6, R6, #-1 ; push
STR R0, R6, #0
ADD R0, R5, #0  ; addr of valueA
ADD R6, R6, #-1 ; push
STR R0, R6, #0

tempVal

firstVal
secondVal

valueB
valueA

xEFFA
xEFF9
4 
3

xEFFD

R6

R5



16-10

Code Using Pointers
Inside the NewSwap routine

; int tempVal = *firstVal;
LDR  R0, R5, #4 ; R0=xEFFA
LDR  R1, R0, #0 ; R1=M[xEFFA]=3
STR  R1, R5, #4 ; tempVal=3
; *firstVal = *secondVal;
LDR  R1, R5, #5 ; R1=xEFF9
LDR  R2, R1, #0 ; R1=M[xEFF9]=4
STR  R2, R0, #0 ; M[xEFFA]=4
; *secondVal = tempVal;
LDR  R2, R5, #0 ; R2=3
STR  R2, R1, #0 ; M[xEFF9]=3

tempVal

firstVal
secondVal

valueB
valueA

3

xEFFA
xEFF9
3 
4

xEFFD

R6
R5



16-11

Array as a Local Variable
Array elements are allocated
as part of the activation record.

int grid[10];

First element (grid[0])
is at lowest address
of allocated space.

If grid is first variable allocated,
then R5 will point to grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]



16-12

LC-3 Code for Array References
; x = grid[3] + 1

ADD R0, R5, #-9  ; R0 = &grid[0]
LDR R1, R0, #3   ; R1 = grid[3]
ADD R1, R1, #1   ; plus 1
STR R1, R5, #-10 ; x = R1

; grid[6] = 5;
AND R0, R0, #0
ADD R0, R0, #5  ; R0 = 5
ADD R1, R5, #-9 ; R1 = &grid[0]
STR R0, R1, #6  ; grid[6] = R0

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5



16-13

More LC-3 Code
; grid[x+1] = grid[x] + 2
LDR R0, R5, #-10  ; R0 = x
ADD R1, R5, #-9   ; R1 = &grid[0]
ADD R1, R0, R1    ; R1 = &grid[x]
LDR R2, R1, #0    ; R2 = grid[x]
ADD R2, R2, #2    ; add 2

LDR R0, R5, #-10  ; R0 = x
ADD R0, R0, #1    ; R0 = x+1
ADD R1, R5, #-9   ; R1 = &grid[0]
ADD R1, R0, R1    ; R1 = &grix[x+1]
STR R2, R1, #0    ; grid[x+1] = R2

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5



16-14

A String is an Array of Characters
Allocate space for a string just like any other array:

char outputString[16];

Space for string must contain room for terminating zero.
Special syntax for initializing a string:

char outputString[16] = "Result = ";

…which is the same as:
outputString[0] = 'R';
outputString[1] = 'e';
outputString[2] = 's';
...



16-15

Common Pitfalls with Arrays in C
Overrun array limits

• There is no checking at run-time or compile-time
to see whether reference is within array bounds.

int array[10];
int i;
for (i = 0; i <= 10; i++) array[i] = 0;

Declaration with variable size
• Size of array must be known at compile time.

void SomeFunction(int num_elements) {
int temp[num_elements];
…

}



16-16

Pointer Arithmetic
Address calculations depend on size of elements

• In our LC-3 code, we've been assuming one word per element.
Øe.g., to find 4th element, we add 4 to base address

• It's ok, because we've only shown code for int and char,
both of which take up one word.

• If double, we'd have to add 8 to find address of 4th element.

C does size calculations under the covers,
depending on size of item being pointed to:

double x[10]; 
double *y = x;
*(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address 
plus 6


