
Lecture 22
Chapters 3
Logic Circuits Part 1

5-2

LC-3
Data Path
Revisited

How are the components
Seen here implemented?

3CS270 - Fall Semester
2015

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

Transistor: Building Block of Computers

Logically, each transistor acts as a switch
Combined to implement logic functions (gates)

• AND, OR, NOT
Combined to build higher-level structures

• Adder, multiplexer, decoder, register, memory …
• Adder, multiplier …

Combined to build simple processor
• LC-3

4

Simple Switch Circuit
Switch open:

• Open circuit, no current
• Light is off
• Vout is +2.9V

Switch closed:
• Short circuit across

switch, current flows
• Light is on
• Vout is 0V

Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage.

5

n-type MOS Transistor
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type
n-type

• when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

• when Gate has zero voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

Gate = 0

Terminal #2 must be
connected to GND (0V).

6

p-type MOS Transistor

p-type is complementary to n-type
• when Gate has positive voltage,

open circuit between #1 and #2
(switch open)

• when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be
connected to +2.9V.

7

Logic Gates
Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.
Digital symbols:

• recall that we assign a range of analog voltages to each
digital (logic) symbol

• assignment of voltage ranges depends on
electrical properties of transistors being used
Øtypical values for "1": +5V, +3.3V, +2.9V
Øfrom now on we'll use +2.9V

8

CMOS Circuit
Complementary MOS uses both n-type and p-type
MOS transistors

• p-type
ØAttached to + voltage (2.9v)
ØPulls output voltage UP when input is zero

• n-type
ØAttached to GND (0v)
ØPulls output voltage DOWN when input is one

For all inputs, output is either connected to GND or to
+, but not both!
No direct connection between + and GND, except
switching. Low power consumption.

9

Inverter (NOT Gate)

In Out
0 V 2.9 V

2.9 V 0 V

In Out
0 1
1 0

Truth table

10

Symbol

11

Logical Operation: OR and NOR

A B OR
0 0 0
0 1 1
1 0 1
1 1 1

A B NOR
0 0 1
0 1 0
1 0 0
1 1 0

Inputs: 2 or
more

Output=A+B Output=A+B
Boolean algebra notation

Truth tables

Logic symbols

12

AND and NAND

A B AND
0 0 0
0 1 0
1 0 0
1 1 1

A B NAND
0 0 1
0 1 1
1 0 1
1 1 0

Inputs: 2 or more

Output = A.B Output = A.B

NOR Gate (OR-NOT)

A B C
0 0 1
0 1 0
1 0 0
1 1 0Note: Serial structure on top, parallel on bottom.

Truth table

13

Logic symbol

OR Gate

Add inverter to NOR.

A B C
0 0 0
0 1 1
1 0 1
1 1 1

Truth table

14

3-15

Basic Logic Gates

16

Boolean Algebra

x
0

0 x
1

x

x
0

x x
1 1

x
x

0

x
x

1

x.0 = 0 x.1 = x x.x = 0

X+0 = x x+1 = x+x =

17

Boolean Algebra Laws (2)
Commutative A+B = B+A A.B = B.A
Associative

• A+(B+C)=(A+B)+C = A+B+C
• A.(B.C)=(A.B).C = ABC

Distributive
• A.(B+C)=A.B+A.C
• A+(B.C)=(A+B).(A+C)

18

Some Useful Identities for simplification
AB+AB = A

Proof: AB+AB =A(B+B)
=A

A+AB = A
Proof: A+AB =A(1+B)

=A

DeMorgan's Law
Converting AND to OR (with some help from NOT)
Consider the following gate:

A B
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

BA ×BA BA ×

Same as A OR B!

To convert AND to OR
(or vice versa),

invert inputs and output.

19

More than 2 Inputs?
AND/OR can take any number of inputs.

• AND = 1 if all inputs are 1.
• OR = 1 if any input is 1.
• Similar for NAND/NOR.

Can implement with multiple two-input gates,
or with single CMOS circuit.

20

Propagation Delay
• Each gate has a propagation delay, typically fraction of

a nanosecond (10-9 sec).
• Delays add depending on the chain of gates the signals

have to go trough.
• Clock frequency is determined by the delay of the

longest combinational path between storage elements.
Measured in GHz (109 cycles per sec).

21

Summary

MOS transistors are used as switches to implement
logic functions.

• n-type: connect to GND, turn on (1) to pull down to 0
• p-type: connect to +2.9V, turn on (0) to pull up to 1

Basic gates: NOT, NOR, NAND
• Boolean Algebra: Logic functions are usually expressed

with AND, OR, and NOT
DeMorgan's Law

• Convert AND to OR (and vice versa)
by inverting inputs and output

22

Building Functions from Logic Gates
Combinational Logic Circuit

• output depends only on the current inputs
• stateless

Sequential Logic Circuit
• output depends on the sequence of inputs (past and present)
• stores information (state) from past inputs

We'll first look at some useful combinational circuits,
then show how to use sequential circuits to store
information.

23

24

Combinatorial Logic
Cascading set of logic gates

Digital circuit

A B C W X Y Z

0 0 0 0 0 0 1

0 0 1 0 1 1 1

0 1 0 0 1 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 0 0

Truth table

25

Logisim Simulator

Logic simulator: allows interactive design and layout
of circuits with AND, OR, and NOT gates

Simulator web page (linked on class web page)
http://www.cburch.com/logisim

Overview, tutorial, downloads, etc.
Windows or Linux operating systems
Logisim demonstration

26

Functional Blocks

Decoder
Multiplexer
Full Adder
Any general function

27

Decoder
n inputs, 2n outputs

• exactly one output is 1 for each possible input pattern

2-bit
decoder

28

Multiplexer (MUX)

n-bit selector and 2n inputs, one output
• output equals one of the inputs, depending on selector

4-to-1 MUX

Functional representation

29

Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

30

Four-bit Adder (ripple carry)

2 levels of delay per stage

31

Logical Completeness
Can implement ANY truth table with combo of AND, OR,
NOT gates.

A B C D
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

1. AND combinations
that yield a "1" in the

truth table.

2. OR the results
of the AND gates.

32

Truth Table (to circuit)

How do we design a circuit for this?

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1

33

Programmable Logic Array

Front end is decoder for
inputs
Back end defines the
outputs
Any truth table can be
built
Not necessarily minimal
circuit!

Requires (at least) ten gates.

34

Circuit Minimization using Boolean Algebra
Boolean logic lets us reduce the circuit

• X = A’B’C’ + A’BC’ + ABC’ + ABC =
= A’C’ + AB

• Y = A’B’C + A’BC + AB’C + ABC
= A’C+AC = C

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1Only three gates!

Try with Logisim!

11/2/17
Discrete math YKM 35

Karnaugh maps to minimize literals
Based on set-theory
• Visual representation of algebraic functions
• Allow algorithmic minimization of boolean functions in sum-of-products

form
• “adjacent” terms can be combined.

• Adjacent: differ in one variable, complemented in one, not
complemented in the other.

Example:
§ABC+ABC’ = AB(C+C’)=AB
§Thus ABC and ABC’ are two pieces of AB.
Combining Minterms
• For n-variables, there are 2n minterms, corresponding to each row of truth table.
• Some of them can be combined into groups of 2, (or 4 or 8 ..) to simplify the

function.

11/2/17
Discrete math YKM 36

Karnaugh maps

Visual representation of algebraic
functions to make it easy to spot “adjacent”
minterms”
• Columns arranged so that adjacent

terms are visually adjacent.
• Identify groups of 2, 4, 8 etc. terms

that can be combined.
• All 1’s must be covered.
• A 1 can be used more than once, if

needed.
• Sometimes the solution is not

unique
• Next: maps for X(A,B,C) and

Y(A,B,C)

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1

Karnaugh Maps: Visualization of algebra

37

B

A\BC 00 01 11 10

0 1 0 0 1
1 0 0 1 1 A

C

B

A\BC 00 01 11 10

0 0 1 1 0
1 0 1 1 0 A

C

A B C X Y

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 0

1 1 1 1 1

Karnaugh Maps: Visualization of algebra

38

B

A\BC 00 01 11 10

0 1 0 0 1
1 0 0 1 1 A

C

A’B’C’+A’BC’ = A’C’; ABC+ABC’ = AB
A’B’C+A’BC+AB’C+ABC= A’C+AC = C

Thus minimized function is
X = A’C’+AB Y = C

B

A\BC 00 01 11 10

0 0 1 1 0
1 0 1 1 0 A

C

39

4-variable Kmaps / Design
C

00 01 11 10
00 1 1
01 1

B
A

11
10 1 1

D

C
00 01 11 10

00 1
01 1 1 1

B
A

11 1 1 1
10 1

D

F(A,B,C,D)=B’D’+_____

F(A,B,C,D)=ABC’+A’C’D+
A’BC+ACD+ ?

Try them with Logisim

40

4-variable Kmaps / Design
C

00 01 11 10
00 1 1
01 1

B
A

11
10 1 1

D

C
00 01 11 10

00 1
01 1 1 1

B
A

11 1 1 1
10 1

D

F(A,B,C,D)=B’D’+A’BC’D

F(A,B,C,D)=ABC’+A’C’D+
A’BC+ACD + ?

Try them with Logisim

