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Transistor: Building Block of Computers

Logically, each transistor acts as a switch
Combined to implement logic functions (gates)

• AND, OR, NOT
Combined to build higher-level structures

• Adder, multiplexer, decoder, register, memory …
• Adder, multiplier … 

Combined to build simple processor
• LC-3
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Simple Switch Circuit
Switch open:

• Open circuit, no current
• Light is off
• Vout is +2.9V

Switch closed:
• Short circuit across 

switch, current flows
• Light is on
• Vout is 0V

Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage. 
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n-type MOS Transistor
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type
n-type

• when Gate has positive voltage,
short circuit between #1 and #2
(switch closed)

• when Gate has zero voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

Gate = 0

Terminal #2 must be
connected to GND (0V).
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p-type MOS Transistor

p-type is complementary to n-type
• when Gate has positive voltage,

open circuit between #1 and #2
(switch open)

• when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be
connected to +2.9V.
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Logic Gates
Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.
Digital symbols:

• recall that we assign a range of analog voltages to each 
digital (logic) symbol

• assignment of voltage ranges depends on 
electrical properties of transistors being used
Øtypical values for "1": +5V, +3.3V, +2.9V
Øfrom now on we'll use +2.9V
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CMOS Circuit
Complementary MOS  uses both n-type and p-type
MOS transistors

• p-type
ØAttached to + voltage (2.9v)
ØPulls output voltage UP when input is zero

• n-type
ØAttached to GND  (0v)
ØPulls output voltage DOWN when input is one

For all inputs, output is either connected to GND or to 
+, but not both!
No direct connection between + and GND, except 
switching. Low power consumption.
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Inverter (NOT Gate)

In Out
0 V 2.9 V

2.9 V 0 V

In Out
0 1
1 0

Truth table
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Symbol
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Logical Operation: OR and NOR

A B OR
0 0 0
0 1 1
1 0 1
1 1 1

A B NOR
0 0 1
0 1 0
1 0 0
1 1 0

Inputs: 2 or 
more

Output=A+B Output=A+B
Boolean algebra notation

Truth tables

Logic symbols
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AND and NAND

A B AND
0 0 0
0 1 0
1 0 0
1 1 1

A B NAND
0 0 1
0 1 1
1 0 1
1 1 0

Inputs: 2 or more

Output = A.B Output = A.B



NOR Gate (OR-NOT)

A B C
0 0 1
0 1 0
1 0 0
1 1 0Note: Serial structure on top, parallel on bottom.

Truth table
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Logic symbol



OR Gate

Add inverter to NOR.

A B C
0 0 0
0 1 1
1 0 1
1 1 1

Truth table
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Basic Logic Gates
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Boolean Algebra
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x.0 = 0 x.1 = x x.x = 0

X+0 = x x+1 = x+x =  
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Boolean Algebra Laws (2)
Commutative   A+B = B+A        A.B = B.A
Associative    

• A+(B+C)=(A+B)+C = A+B+C
• A.(B.C)=(A.B).C  =  ABC

Distributive
• A.(B+C)=A.B+A.C
• A+(B.C)=(A+B).(A+C)
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Some Useful Identities for simplification
AB+AB = A

Proof:  AB+AB =A(B+B)
=A

A+AB = A
Proof:   A+AB =A(1+B)

=A



DeMorgan's Law
Converting AND to OR (with some help from NOT)
Consider the following gate:

A B
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

BA ×BA BA ×

Same as A OR B!

To convert AND to OR 
(or vice versa),

invert inputs and output.
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More than 2 Inputs?
AND/OR can take any number of inputs.

• AND = 1 if all inputs are 1.
• OR = 1 if any input is 1.
• Similar for NAND/NOR.

Can implement with multiple two-input gates,
or with single CMOS circuit.
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Propagation Delay
• Each gate has a propagation delay, typically fraction of 

a nanosecond  (10-9 sec).
• Delays add depending on the chain of gates the signals 

have to go trough.
• Clock frequency is determined by the delay of the 

longest combinational path between storage elements. 
Measured in GHz (109 cycles per sec).
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Summary

MOS transistors are used as switches to implement 
logic functions.

• n-type: connect to GND, turn on (1) to pull down to 0
• p-type: connect to +2.9V, turn on (0) to pull up to 1

Basic gates: NOT, NOR, NAND
• Boolean Algebra:  Logic functions are usually expressed 

with AND, OR, and NOT
DeMorgan's Law

• Convert AND to OR (and vice versa) 
by inverting inputs and output
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Building Functions from Logic Gates
Combinational Logic Circuit

• output depends only on the current inputs
• stateless

Sequential Logic Circuit
• output depends on the sequence of inputs (past and present)
• stores information (state) from past inputs

We'll first look at some useful combinational circuits, 
then show how to use sequential circuits to store 
information.
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Combinatorial Logic
Cascading set of logic gates

Digital circuit

A B C W X Y Z

0 0 0 0 0 0 1

0 0 1 0 1 1 1

0 1 0 0 1 1 1

0 1 1 0 1 1 1

1 0 0 0 0 0 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 1 1 0 0

Truth table
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Logisim Simulator

Logic simulator: allows interactive design and layout 
of circuits with AND, OR, and NOT gates

Simulator web page (linked on class web page)
http://www.cburch.com/logisim

Overview, tutorial, downloads, etc.
Windows or Linux operating systems
Logisim demonstration
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Functional Blocks

Decoder
Multiplexer
Full Adder
Any general function
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Decoder  
n inputs, 2n outputs

• exactly one output is 1 for each possible input pattern

2-bit
decoder
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Multiplexer (MUX)

n-bit selector and 2n inputs, one output
• output equals one of the inputs, depending on selector

4-to-1 MUX

Functional representation



29

Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
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Four-bit Adder (ripple carry)

2 levels of delay per stage



31

Logical Completeness
Can implement ANY truth table with combo of AND, OR, 
NOT gates.

A B C D
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

1. AND combinations 
that yield a "1" in the 

truth table.

2. OR the results
of the AND gates.
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Truth Table (to circuit)

How do we design a circuit for this?

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1
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Programmable Logic Array

Front end is decoder for 
inputs
Back end defines the 
outputs
Any truth table can be 
built
Not necessarily minimal 
circuit!

Requires (at least) ten gates.
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Circuit Minimization using Boolean Algebra
Boolean logic lets us reduce the circuit

• X = A’B’C’ + A’BC’ + ABC’ + ABC = 
=  A’C’ + AB

• Y = A’B’C + A’BC + AB’C + ABC 
= A’C+AC = C

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1Only three gates!

Try with Logisim!
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Karnaugh maps to minimize literals
Based on set-theory
• Visual representation of algebraic functions
• Allow algorithmic minimization of boolean functions in sum-of-products 

form
• “adjacent” terms can be combined.

• Adjacent: differ in one variable, complemented in one, not 
complemented in the other.

Example:
§ABC+ABC’ = AB(C+C’)=AB
§Thus ABC and ABC’ are two pieces of AB.
Combining Minterms
• For n-variables, there are 2n minterms, corresponding to each row of truth table.
• Some of them can be combined into groups of 2, (or 4 or 8 ..) to simplify the 

function.
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Karnaugh maps

Visual representation of algebraic 
functions to make it easy to spot “adjacent” 
minterms”
• Columns arranged so that adjacent 

terms are visually adjacent.
• Identify groups of 2, 4, 8 etc. terms 

that can be combined.
• All 1’s must be covered.
• A 1 can be used more than once, if 

needed. 
• Sometimes the solution is not 

unique
• Next: maps for X(A,B,C) and 

Y(A,B,C)

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1



Karnaugh Maps: Visualization of algebra
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B

A\BC 00 01 11 10

0 1 0 0 1
1 0 0 1 1 A

C

B

A\BC 00 01 11 10

0 0 1 1 0
1 0 1 1 0 A

C

A B C X Y

0 0 0 1 0

0 0 1 0 1

0 1 0 1 0

0 1 1 0 1

1 0 0 0 0

1 0 1 0 1

1 1 0 1 0

1 1 1 1 1



Karnaugh Maps: Visualization of algebra
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B

A\BC 00 01 11 10

0 1 0 0 1
1 0 0 1 1 A

C

A’B’C’+A’BC’ = A’C’;  ABC+ABC’ = AB
A’B’C+A’BC+AB’C+ABC= A’C+AC = C

Thus minimized function is
X = A’C’+AB     Y = C

B

A\BC 00 01 11 10

0 0 1 1 0
1 0 1 1 0 A

C
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4-variable Kmaps / Design
C

00 01 11 10
00 1 1
01 1

B
A

11
10 1 1

D

C
00 01 11 10

00 1
01 1 1 1

B
A

11 1 1 1
10 1

D

F(A,B,C,D)=B’D’+_____

F(A,B,C,D)=ABC’+A’C’D+
A’BC+ACD+    ?

Try them with Logisim
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4-variable Kmaps / Design
C

00 01 11 10
00 1 1
01 1

B
A

11
10 1 1

D

C
00 01 11 10

00 1
01 1 1 1

B
A

11 1 1 1
10 1

D

F(A,B,C,D)=B’D’+A’BC’D

F(A,B,C,D)=ABC’+A’C’D+
A’BC+ACD  +  ?

Try them with Logisim


