
Processor Performance and 
Parallelism
Y. K. Malaiya



2

Processor Execution time
The time taken by a program to execute is the product of
nNumber of machine instructions executed
nNumber of clock cycles per instruction (CPI)
nSingle clock period duration

Example: 10,000 instructions, CPI=2, clock period = 250 
ps

period ClockCPICount nInstructioTime CPU
nInstructio per CyclesCount nInstructioCycles Clock

´´=

´=

.sec610.51210.2502410

250000,0
-=-´´=

´´= psnsinstructio 2 1Time CPU



Processor Execution time
Instruction Count for a program

nDetermined by program, ISA and compiler
Average Cycles per instruction (CPI)
nDetermined by CPU hardware
n If different instructions have different CPI

Average CPI affected by instruction mix
Clock cycle time (inverse of frequency)
nLogic levels
n technology

3

Time Cycle ClockCPICount nInstructioTime CPU ´´=



Reducing clock cycle time
Has worked well for decades. 
Small transistor dimensions implied smaller delays and 

hence lower clock cycle time.
Not any more.

4



CPI (cycles per instruction)
What is LC-3 cycles per instruction?
Instructions take 5-9 cycles (p. 568), assuming memory 

access time is one clock period.
nLC-3 CPI may be about 6*. (ideal)

No cache, memory access time = 100 cycles?
nLC-3 CPI  would be very high.

Cache reduces access time to 2 cycles.
nLC-3 CPI higher than 6, but still reasonable. 

5

Load/store instructions
are about 20-30% 



Parallelism to save time
Do things in parallel to save time.
Approaches: 

• Instruction level parallelism
ØPipelining: Divide flow into stages. Let instructions flow into 

the pipeline.
ØMultiple issue: Fetch multiple instructions at the same time

• Concurrent processes or thread (Task-level parallelism)
ØFor true concurrency, need extra hardware

– Multiple processors (cores) or 
– support for multiple thread

6

Demo: Threads in Mac



Pipelining Analogy
Pipelined laundry: overlapping execution

• Parallelism improves performance

7

n Four loads:
n time

= 4x2 = 8 hours
n Pipelined:
n Time in example
= 7x0.5 = 3.5 hours

n Non-stop
= 4x0.5 = 2 hours.



Pipeline Processor Performance

8

Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)



Pipelining: Issues
Cannot predict which branch will be taken.
nActually you may be able to make a good guess.
nSome performance penalty for bad guesses.

Instructions may depend on results of previous 
instructions.

nThere may be a way to get around that problem in some cases.

9



Instruction level parallelism (ILP):
Pipelining is one example.
Multiple issue: have multiple copies of resources

• Multiple instructions start at the same time
• Need careful scheduling

ØCompiler assisted scheduling
ØHardware assisted (“superscaler”): “dynamic scheduling”

– Ex: AMD Opteron x4
– CPI  can be less than 1!.

10



Task Parallelism
Program is divided into tasks that can be run in parallel

Concurrent Processes
nCan run truly in parallel if there are multiple processors, e.g. 

multi-core processors
Concurrent Threads
nMultiple threads can run on multiple processors, or
nSingle processor with multi-threading support (Simultaneous 

Multithreading)
Process vs thread
nAll information resources for a process are private to the 

process.
nMultiple threads within a process have private registers & stack, 

but not address space.

11



Task Parallelism
Program is divided into tasks that can be run in parallel

Example: A program needs subtasks A,B,C,D. B and C can be run in 
parallel.  They each take 200, 500, 500 and 300 nanoseconds.

Without parallelism: total time needed = 200+500+500+300 = 1500 ns.
With Task level parallelism: 200 +500 (B and C in parallel) +300 = 1000 
ns.

12

A B C D

A B
C

D



Task Parallelism

13



Flynn’s taxonomy
Michael J. Flynn,  1966

14

Data Streams
Single Multiple

Instruction 
Streams

Single SISD:
Intel Pentium 4

SIMD: MMX/SSE 
instructions in x86

Multiple MISD:
No examples today

MIMD:  eg. Multicore
Intel Xeon e5345

n Instruction level parallelism is still SISD
n SSE (Streaming SIMD Extensions): vector operations
n Intel Xeon e5345: 4 cores
n Does not model Instruction level/task level parallelism



Multi what?
Multitasking: tasks share a processor
Multithreading: threads share a processor
Multiprocessors: using multiple processors
nFor example multi-core processors (multiples processors on the 

same chip)
nScheduling of tasks/subtasks needed

15



Multi-core processors
Power consumption has become a limiting factor
Key advantage: lower power consumption for the 

same performance
nEx: 20% lower clock frequency: 87% performance, 51% 

power.
A processor can switch to lower frequency to 

reduce power.
N cores: can run n or more threads.

16



Multi-core processors
Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.
Cores may use superscalar or simultaneous multi-
threading architectures.

17



LC-3 
states

18

Instruction Cycles

ADD, AND, 
NOT, JMP

5

TRAP 8

LD, LDR, 
ST, STR

7

LDI, STI 9

BR 5, 6

JSR 6


