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Processor Execution time
The time taken by a program to execute is the product of
nNumber of machine instructions executed
nNumber of clock cycles per instruction (CPI)
nSingle clock period duration

Example: 10,000 instructions, CPI=2, clock period = 250 
ps
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Processor Execution time
Instruction Count for a program

nDetermined by program, ISA and compiler
Average Cycles per instruction (CPI)
nDetermined by CPU hardware
n If different instructions have different CPI

Average CPI affected by instruction mix
Clock cycle time (inverse of frequency)
nLogic levels
n technology
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Time Cycle ClockCPICount nInstructioTime CPU ´´=



Reducing clock cycle time
Has worked well for decades. 
Small transistor dimensions implied smaller delays and 

hence lower clock cycle time.
Not any more.
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CPI (cycles per instruction)
What is LC-3 cycles per instruction?
Instructions take 5-9 cycles (p. 568), assuming memory 

access time is one clock period.
nLC-3 CPI may be about 6*. (ideal)

No cache, memory access time = 100 cycles?
nLC-3 CPI  would be very high.

Cache reduces access time to 2 cycles.
nLC-3 CPI higher than 6, but still reasonable. 
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Load/store instructions
are about 20-30% 



Parallelism to save time
Do things in parallel to save time.
Approaches: 

• Instruction level parallelism
ØPipelining: Divide flow into stages. Let instructions flow into 

the pipeline.
ØMultiple issue: Fetch multiple instructions at the same time

• Concurrent processes or thread (Task-level parallelism)
ØFor true concurrency, need extra hardware

– Multiple processors (cores) or 
– support for multiple thread
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Demo: Threads in Mac



Pipelining Analogy
Pipelined laundry: overlapping execution

• Parallelism improves performance
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n Four loads:
n time

= 4x2 = 8 hours
n Pipelined:
n Time in example
= 7x0.5 = 3.5 hours

n Non-stop
= 4x0.5 = 2 hours.



Pipeline Processor Performance
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Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)



Pipelining: Issues
Cannot predict which branch will be taken.
nActually you may be able to make a good guess.
nSome performance penalty for bad guesses.

Instructions may depend on results of previous 
instructions.

nThere may be a way to get around that problem in some cases.
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Instruction level parallelism (ILP):
Pipelining is one example.
Multiple issue: have multiple copies of resources

• Multiple instructions start at the same time
• Need careful scheduling

ØCompiler assisted scheduling
ØHardware assisted (“superscaler”): “dynamic scheduling”

– Ex: AMD Opteron x4
– CPI  can be less than 1!.
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Task Parallelism
Program is divided into tasks that can be run in parallel

Concurrent Processes
nCan run truly in parallel if there are multiple processors, e.g. 

multi-core processors
Concurrent Threads
nMultiple threads can run on multiple processors, or
nSingle processor with multi-threading support (Simultaneous 

Multithreading)
Process vs thread
nAll information resources for a process are private to the 

process.
nMultiple threads within a process have private registers & stack, 

but not address space.
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Task Parallelism
Program is divided into tasks that can be run in parallel

Example: A program needs subtasks A,B,C,D. B and C can be run in 
parallel.  They each take 200, 500, 500 and 300 nanoseconds.

Without parallelism: total time needed = 200+500+500+300 = 1500 ns.
With Task level parallelism: 200 +500 (B and C in parallel) +300 = 1000 
ns.
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Task Parallelism
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Flynn’s taxonomy
Michael J. Flynn,  1966
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Data Streams
Single Multiple

Instruction 
Streams

Single SISD:
Intel Pentium 4

SIMD: MMX/SSE 
instructions in x86

Multiple MISD:
No examples today

MIMD:  eg. Multicore
Intel Xeon e5345

n Instruction level parallelism is still SISD
n SSE (Streaming SIMD Extensions): vector operations
n Intel Xeon e5345: 4 cores
n Does not model Instruction level/task level parallelism



Multi what?
Multitasking: tasks share a processor
Multithreading: threads share a processor
Multiprocessors: using multiple processors
nFor example multi-core processors (multiples processors on the 

same chip)
nScheduling of tasks/subtasks needed
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Multi-core processors
Power consumption has become a limiting factor
Key advantage: lower power consumption for the 

same performance
nEx: 20% lower clock frequency: 87% performance, 51% 

power.
A processor can switch to lower frequency to 

reduce power.
N cores: can run n or more threads.
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Multi-core processors
Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.
Cores may use superscalar or simultaneous multi-
threading architectures.
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LC-3 
states
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Instruction Cycles

ADD, AND, 
NOT, JMP

5

TRAP 8

LD, LDR, 
ST, STR
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LDI, STI 9

BR 5, 6

JSR 6


