Processor Performance and

Parallelism
Y. K. Malaiya

Processor Execution time

@The time taken by a program to execute is the product of
B Number of machine instructions executed
B Number of clock cycles per instruction (CPI)
B Single clock period duration

Clock Cycles = Instruction Count x Cycles per Instruction
CPU Time =Instruction Count x CPIx Clock period

oExample: 10,000 instructions, CPI=2, clock period = 250
ps
CPU Time =10,000instructions x 2x 250 ps

4 12 6

=10"x2x250.10 " =5.10 " sec.

Processor Execution time
@Instruction Count for a program

CPU Time = Instruction Count x CPIlx Clock Cycle Time

B Determined by program, ISA and compiler

@Average Cycles per instruction (CPI)
B Determined by CPU hardware
B If different instructions have different CPI
@ Average CPI affected by instruction mix

@Clock cycle time (inverse of frequency)
B Logic levels
B technology

Reducing clock cycle time

@Has worked well for decades.

@Small transistor dimensions implied smaller delays and
hence lower clock cycle time.

@Not any more.

285 5 pehT
s 9’?‘5

MIPS!CPU clock speed

T T T T T T T
1980 1985 1990 1995 2000 2005 2010

CPI (cycles per instruction)
@What is LC-3 cycles per instruction?

@Instructions take 5-9 cycles (p. 568), assuming memory
access time is one clock period.

H LC-3 CPl may be about 6*. (ideal)

@No cache, memory access time = 100 cycles?
H LC-3 CPl would be very hlgh Load/store instructions

are about 20-30%
@Cache reduces access time to 2 cycles.
H LC-3 CPI higher than 6, but still reasonable.

Parallelism to save time

Do things in parallel to save time.
Approaches:

* Instruction level parallelism
» Pipelining: Divide flow into stages. Let instructions flow into
the pipeline.
» Multiple issue: Fetch multiple instructions at the same time
« Concurrent processes or thread (Task-level parallelism)

» For true concurrency, need extra hardware
— Multiple processors (cores) or
— support for multiple thread

Demo: Threads in Mac

Pipelining Analogy

Pipelined laundry: overlapping execution

» Parallelism improves performance

Time — - e . e |

Task
order

A

B
C
D

Task
order

>

W) (@] o}

6 PM 7 8 9

 ®EE

6 PM 7 8 9

10

10

11

11

12

12

1

1

2 AM

=l
B5=(
S5
- ®El]

Time ‘W | | | | |

Four loads:
time

= 4x2 = 8 hours

Pipelined:

Time in example
= 7x0.5 = 3.5 hours

Non-stop
= 4x0.5 = 2 hours.

Pipeline Processor Performance

Program
execution L. 200 400 600 800 1000 1200 1400 1600 1800
Order I I T I I I I I I
(in instructions)
w $1,100($0)| "5 | Reg| AU | D | Reg
w $2, 200(30) 800 ps en_|Res| ALU | 0o | Reg
w $3, 300($0) 800 ps insirction
Program
execution . 200 400 600 800 1000 1200 1400
Tme T I T T T T I
order
(in instructions)
W §1,10060) " fmeo| aw | 2 e
w $2,200($0) 200 ps | "o |Reg| AU | D% |Reg
I $3, 300($0) 200ps | “eion | |Fe9| AW | access |Fe9

200 ps 200 ps 200 ps 200 ps 200 ps

Pipelining: Issues

@Cannot predict which branch will be taken.
B Actually you may be able to make a good guess.
B Some performance penalty for bad guesses.

@Instructions may depend on results of previous
instructions.

B There may be a way to get around that problem in some cases.

Instruction level parallelism (ILP):
Pipelining Is one example.

Multiple issue: have multiple copies of resources
« Multiple instructions start at the same time

* Need careful scheduling
» Compiler assisted scheduling

» Hardware assisted (“superscaler”): “dynamic scheduling”
— Ex: AMD Opteron x4
— CPI can be less than 1!.

10

Task Parallelism

Program is divided into tasks that can be run in parallel

@Concurrent Processes

B Can run truly in parallel if there are multiple processors, e.g.
multi-core processors

@Concurrent Threads
B Multiple threads can run on multiple processors, or

B Single processor with multi-threading support (Simultaneous
Multithreading)

@Process vs thread

B All information resources for a process are private to the
process.

B Multiple threads within a process have private registers & stack,
but not address space.

1

Task Parallelism

Program is divided into tasks that can be run in parallel

@Example: A program needs subtasks A,B,C,D. B and C can be run in
parallel. They each take 200, 500, 500 and 300 nanoseconds.
@ Without parallelism: total time needed = 200+500+500+300 = 1500 ns.

@ With Task level parallelism: 200 +500 (B and C in parallel) +300 = 1000
ns.

12

Task Parallelism

Thread 1

«Stack
*Registers

Thread 2
*Stack

13

Flynn’s taxonomy
@Michael J. Flynn, 1966

Data Streams

Single Multiple
Instruction | Single SISD: SIMD: MMX/SSE
Streams Intel Pentium 4 instructions in x86
Multiple | MISD: MIMD: eg. Multicore
No examples today | |ntel Xeon e5345

Instruction level parallelism is still SISD

SSE (Streaming SIMD Extensions): vector operations
Intel Xeon €5345: 4 cores

Does not model Instruction level/task level parallelism

Multi what?

@Multitasking: tasks share a processor
@Multithreading: threads share a processor

@Multiprocessors: using multiple processors

B For example multi-core processors (multiples processors on the
same chip)

B Scheduling of tasks/subtasks needed

15

Multi-core processors

@Power consumption has become a limiting factor
@Key advantage: lower power consumption for the

same performance

B EX: 20% lower clock frequency: 87% performance, 51%

power.

Q@A processor can switch to lower frequency to

reduce power.

@N cores: can run n or more threads.

= Performance

Under-Clocking

Relative single-core frequency and Voo

1.73x

113x 1.00x -

0.51x

Power

Over-clocked (+20%) Max Freguency Under-clocked (-20%)

16

Multi-core processors

Cores may be identical or specialized
Higher level caches are shared.
Lower level cache coherency required.

Cores may use superscalar or simultaneous multi-
threading architectures.

17

LC-3
states

MAR <-PC
PC<—PC+1
[INT]

(See Figure C.7)

IR<-MDR

BEN<-IR[11]&N +IR[10] & Z + IR[9] & P
[IR[15:12]]

ADD,AND, 5
- NOT, JMP

Tote R7<-PC
[IR[11]]

To 18

TRAP 8

LD, LDR, 7
ST, STR

LDI, STI 9
NOTES BR 5’ 6

PG.af PG + SEXTifol] JSR 6

*0P2 may be SR2 or SEXT[imm5]

+ 24 29

C:GADPR—M[MARD @DFk—M{MARD

R R R =) —1

MAR<-B+0ff6 MAR<-B+0ff6

18

