Chapter 2
Bits, Data Types, and Operations

How do we represent data in a computer?
At the lowest level, a computer is an electronic machine.
• works by controlling the flow of electrons

Easy to recognize two conditions:
1. presence of a voltage – we’ll call this state "1"
2. absence of a voltage – we’ll call this state "0"

Could base state on value of voltage, but control and detection circuits more complex.
• compare turning on a light switch to measuring or regulating voltage

Computer is a binary digital system.

<table>
<thead>
<tr>
<th>Digital system:</th>
<th>Binary (base two) system:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• finite number of symbols</td>
<td>• has two states: 0 and 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital Values</th>
<th>0</th>
<th>"0"</th>
<th>Illegal</th>
<th>"1"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Values</td>
<td>0</td>
<td>0.5</td>
<td>2.4</td>
<td>2.9 Volts</td>
</tr>
</tbody>
</table>

Basic unit of information is the binary digit, or bit.
Values with more than two states require multiple bits.
• A collection of two bits has four possible states: 00, 01, 10, 11
• A collection of three bits has eight possible states: 000, 001, 010, 011, 100, 101, 110, 111
• A collection of n bits has 2^n possible states.
What kinds of data do we need to represent?

- Numbers – signed, unsigned, integers, floating point, complex, rational, irrational, ...
- Logical – true, false
- Text – characters, strings, ...
- Instructions (binary) – LC-3, x-86 ...
- Images – jpeg, gif, bmp, png ...
- Sound – mp3, wav...
- ...

Data type:
- representation and operations within the computer

We’ll start with numbers...

Unsigned Integers

Non-positional notation
- could represent a number ("5") with a string of ones ("11111")
- problems?

Weighted positional notation
- like decimal numbers: "329"
- "3" is worth 300, because of its position, while "9" is only worth 9

\[
\begin{array}{c}
329 \\
10^2 \\
10^1 \\
10^0 \\
\end{array}
\begin{array}{c}
101 \\
2^2 \\
2^1 \\
2^0 \\
\end{array}
\]

\[
3 \times 100 + 2 \times 10 + 9 \times 1 = 329 \\
1 \times 4 + 0 \times 2 + 1 \times 1 = 5
\]

Unsigned Integers (cont.)

An n-bit unsigned integer represents \(2^n\) values:
from 0 to \(2^n-1\).
Unsigned Binary Arithmetic
Base-2 addition – just like base-10!
• add from right to left, propagating carry

\[
\begin{array}{c}
10010 \\
+ \ 1001 \\
\hline
11011
\end{array} \quad \begin{array}{c}
10110 \\
+ \ 1011 \\
\hline
11101
\end{array} \quad \begin{array}{c}
\text{carry} \\
+ \ 1 \\
\hline
10000
\end{array}
\]

Subtraction, multiplication, division,…

Signed Integers
With n bits, we have \(2^n\) distinct values.
• assign about half to positive integers (1 through \(2^{n-1}\))
and about half to negative (- \(2^{n-1}\) through -1)
• that leaves two values: one for 0, and one extra
Positive integers
• just like unsigned – zero in most significant (MS) bit
\(00101 = 5\)
Negative integers: formats
• sign-magnitude – set MS bit to show negative, other bits are the same as unsigned
\(10101 = -5\)
• one’s complement – flip every bit to represent negative
\(11010 = -5\)
• in either case, MS bit indicates sign: 0=positive, 1=negative

Two’s Complement
Problems with sign-magnitude and 1’s complement
• two representations of zero (+0 and –0)
• arithmetic circuits are complex
 ➢ How to add two sign-magnitude numbers?
 – e.g., try \(2 + (-3)\)
 ➢ How to add to one’s complement numbers?
 – e.g., try \(4 + (-3)\)
Two’s Complement

Two’s complement representation developed to make circuits easy for arithmetic.

- for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with “normal” addition, ignoring carry out

\[
\begin{array}{ccc}
00101 & (5) & 01001 & (9) \\
+ 11011 & (-5) & + & 00000 & (-9) \\
00000 & (0) & 00000 & (0)
\end{array}
\]

2-10

Two’s Complement Representation

If number is positive or zero,
- normal binary representation, zeroes in upper bit(s)

If number is negative,
- start with positive number
- flip every bit (i.e., take the one’s complement)
- then add one

\[
\begin{array}{ccc}
00101 & (5) & 01001 & (9) \\
11010 & (1’s comp) & 11010 & (1’s comp) \\
+ 1 & (1’s comp) & + 1 & (1’s comp) \\
11011 & (-5) & 1 & (-9)
\end{array}
\]

2-11

Two’s Complement Shortcut

To take the two’s complement of a number:
- copy bits from right to left until (and including) the first “1”
- flip remaining bits to the left

\[
\begin{array}{ccc}
011010000 & (1’s comp) & 011010000 & (copy) \\
+ & 1 & & \\
100110000 & & 100110000
\end{array}
\]

2-12
Two's Complement Signed Integers

MS bit is sign bit – it has weight \(-2^{n-1}\).

Range of an n-bit number: \(-2^{n-1}\) through \(2^{n-1} - 1\).

- The most negative number \((-2^{n-1})\) has no positive counterpart.

<table>
<thead>
<tr>
<th>(-2^n)</th>
<th>(2^n)</th>
<th>(2^3)</th>
<th>(2^2)</th>
<th>(2^1)</th>
<th>(-2^n)</th>
<th>(2^n)</th>
<th>(2^3)</th>
<th>(2^2)</th>
<th>(2^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>1 0 0 0</td>
<td>0</td>
<td>-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>1 0 0 1</td>
<td>1</td>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>1 0 1 0</td>
<td>2</td>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>1 0 1 1</td>
<td>3</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1 1 0 0</td>
<td>4</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>1 1 0 1</td>
<td>5</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>1 1 1 0</td>
<td>6</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1 1 1 1</td>
<td>7</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Converting Binary (2's C) to Decimal

1. If leading bit is one, take two's complement to get a positive number.
2. Add powers of 2 that have "1" in the corresponding bit positions.
3. If original number was negative, add a minus sign.

\[
X = 01101000_{\text{two}} \\
= 2^6+2^5+2^3 = 64+32+8 \\
= 104_{\text{ten}}
\]

Assuming 8-bit 2's complement numbers.

More Examples

\[
X = 00100111_{\text{two}} \\
= 2^5+2^4+2^1 = 32+16+2 \\
= 39_{\text{ten}}
\]

\[
X = 11100110_{\text{two}} \\
\neg X = 00011010 \\
= 2^4+2^3+2^1 = 16+8+2 \\
= 26_{\text{ten}} \\
X = -26_{\text{ten}}
\]

Assuming 8-bit 2's complement numbers.
Converting Decimal to Binary (2’s C)

First Method: Division
1. Find magnitude of decimal number. (Always positive.)
2. Divide by two – remainder is least significant bit.
3. Keep dividing by two until answer is zero, writing remainders from right to left.
4. Append a zero as the MS bit; if original number was negative, take two’s complement.

\[X = 104_{10} \]

<table>
<thead>
<tr>
<th>Division</th>
<th>Remainder</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>104/2 = 52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>52/2 = 26</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26/2 = 13</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>13/2 = 6 remainder 1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>6/2 = 3 remainder 0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3/2 = 1 remainder 1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1/2 = 0 remainder 1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

\[X = 01101000_2 \]

Second Method: Subtract Powers of Two
1. Find magnitude of decimal number.
2. Subtract largest power of two less than or equal to number.
3. Put a one in the corresponding bit position.
4. Keep subtracting until result is zero.
5. Append a zero as MS bit; if original was negative, take two’s complement.

\[X = 104_{10} \]

<table>
<thead>
<tr>
<th>Subtraction</th>
<th>Remainder</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>104 - 64 = 40</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>40 - 32 = 8</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8 - 8 = 0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

\[X = 01101000_2 \]

Operations: Arithmetic and Logical

Recall: a data type includes representation and operations.
We now have a good representation for signed integers, so let’s look at some arithmetic operations:
- Addition
- Subtraction
- Sign Extension

We’ll also look at overflow conditions for addition. Multiplication, division, etc., can be built from these basic operations.

Logical operations are also useful:
- AND
- OR
- NOT
Addition
As we’ve discussed, 2’s comp. addition is just binary addition.
• assume all integers have the same number of bits
• ignore carry out
• for now, assume that sum fits in n-bit 2’s comp. representation

```
01101000 (104) 11110110 (-10)
+ 11110000 (-16) + 01011000 (98) (-19)
```

Assuming 8-bit 2’s complement numbers.

Subtraction
Negate subtrahend (2nd no.) and add.
• assume all integers have the same number of bits
• ignore carry out
• for now, assume that difference fits in n-bit 2’s comp. representation

```
01101000 (104) 11110110 (-10)
- 00010000 (16) - 01101000 (104) 11110110 (-10)
+ 11110000 (-16) + 01011000 (98) (-1)
```

Assuming 8-bit 2’s complement numbers.

Sign Extension
To add two numbers, we must represent them with the same number of bits.
If we just pad with zeroes on the left:

```
4-bit   8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not -4)
```

Instead, replicate the MS bit -- the sign bit:

```
4-bit   8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)
```
Overflow
If operands are too big, then sum cannot be represented as an n-bit 2’s comp number.

\[
\begin{align*}
01000 & \quad (8) \\
+ 01001 & \quad (9) \\
10001 & \quad (-15)
\end{align*}
\]

\[
\begin{align*}
11000 & \quad (-8) \\
+ 10111 & \quad (-9) \\
01111 & \quad (+15)
\end{align*}
\]

We have overflow if:
• signs of both operands are the same, and
• sign of sum is different.

Another test -- easy for hardware:
• carry into MS bit does not equal carry out

Logical Operations
Operations on logical TRUE or FALSE
• two states -- takes one bit to represent: TRUE=1, FALSE=0

\[
\begin{array}{c|c|c}
A & B & A \text{ AND } B \\
\hline
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
A & B & A \text{ OR } B \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\quad
\begin{array}{c|c|c}
A & \text{ NOT } A \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}
\]

View n-bit number as a collection of n logical values
• operation applied to each bit independently

Examples of Logical Operations
AND
• useful for clearing bits
 ➢ AND with zero = 0
 ➢ AND with one = no change

\[
\begin{align*}
00001111 & \quad 00000101 \\
\end{align*}
\]

OR
• useful for setting bits
 ➢ OR with zero = no change
 ➢ OR with one = 1

\[
\begin{align*}
11000101 & \quad 00001111 \\
\end{align*}
\]

NOT
• unary operation -- one argument
 • flips every bit

\[
\begin{align*}
11000101 & \quad 00111010 \\
\end{align*}
\]
Hexadecimal Notation

It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead.

- fewer digits -- four bits per hex digit
- less error prone -- easy to corrupt long string of 1’s and 0’s

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
<th>Hex</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>1000</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1001</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
<td>1010</td>
<td>A</td>
<td>10</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
<td>1011</td>
<td>B</td>
<td>11</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
<td>1100</td>
<td>C</td>
<td>12</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
<td>1101</td>
<td>D</td>
<td>13</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
<td>1110</td>
<td>E</td>
<td>14</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>1111</td>
<td>F</td>
<td>15</td>
</tr>
</tbody>
</table>

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

- start grouping from right-hand side

```
011101101000111101010111
  3  A  8  F  4  D  7
```

This is not a new machine representation, just a convenient way to write the number.

Fractions: Fixed-Point

How can we represent fractions?

- Use a "binary point" to separate positive from negative powers of two -- just like "decimal point."
- 2’s comp addition and subtraction still work.

 - if binary points are aligned
 - $2^{-1} = 0.5$
 - $2^{-2} = 0.25$
 - $2^{-3} = 0.125$

```
00101000.101  (40.625)  
+ 11111110.110  (-1.25)  
00100111.101  (39.375)
```

No new operations -- same as integer arithmetic.
Very Large and Very Small: Floating-Point
Large values: 6.023×10^{23} -- requires 79 bits
Small values: 6.826×10^{-34} -- requires >110 bits

Use equivalent of "scientific notation": $F \times 2^E$
Need to represent F (fraction), E (exponent), and sign.
IEEE 754 Floating-Point Standard (32-bits):

$$N = (-1)^S \times 1 \cdot \text{fraction} \times 2^{E = \text{exponent} - 127}, \ 1 \leq \text{exponent} \leq 254$$

Floating Point Example
Single-precision IEEE floating point number:

```
10111111010000000000000000000000
```

- Sign is 1 – number is negative.
- Exponent field is 10111110 = 126 (decimal).
- Fraction is 1.0000000000000... = 0.5 (decimal).

Value = $-1.5 \times 2^{(126-127)} = -1.5 \times 2^{-1} = -0.75$.

Decimal to float32
1. Change decimal number to binary
2. Move radix point so there is only a single 1 bit to the
 left of the radix point.
 - Every position moved to the left increases the exponent size
 by one.
 - Every position moved to the right decreases the exponent
 size by one.
 - The initial exponent is 0.
3. Remove leading 1 from resulting binary number and
 store this number in bits 0-22.
4. Add 127 to exponent and store binary representation of
 exponent in bits 23-30
5. Store sign in bit 31, 1 for negative, 0 for positive.
Float 32 to decimal

1. Check bit MSB (31) for sign, 1 negative, 0 positive
2. Extract bits 30 – 23, and find their value in binary then subtract 127 to get the exponent
3. Extract bits 22 – 0 and add implicit bit with value 1 to location 23 to get the fractional part
4. Change value of exponent to 0 by shifting radix point of fractional part right to reduce exponent and left to increase exponent
5. Convert resulting binary number to decimal

Floating-Point Operations

Will regular 2’s complement arithmetic work for Floating Point numbers?

(Hint: In decimal, how do we compute $3.07 \times 10^{12} + 9.11 \times 10^8$?

Need to work with exponents)

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

- both printable and non-printable (ESC, DEL, …) characters

<table>
<thead>
<tr>
<th>ASCII</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>null</td>
</tr>
<tr>
<td>01</td>
<td>start of header</td>
</tr>
<tr>
<td>02</td>
<td>form feed</td>
</tr>
<tr>
<td>03</td>
<td>start of text</td>
</tr>
<tr>
<td>04</td>
<td>start of undefined code</td>
</tr>
<tr>
<td>05</td>
<td>start of a预留code</td>
</tr>
<tr>
<td>06</td>
<td>start of text</td>
</tr>
<tr>
<td>07</td>
<td>start of extended text</td>
</tr>
<tr>
<td>08</td>
<td>start of extended text</td>
</tr>
<tr>
<td>09</td>
<td>start of extended text</td>
</tr>
<tr>
<td>0a</td>
<td>start of extended text</td>
</tr>
<tr>
<td>0b</td>
<td>start of extended text</td>
</tr>
<tr>
<td>0c</td>
<td>start of extended text</td>
</tr>
<tr>
<td>0d</td>
<td>start of extended text</td>
</tr>
<tr>
<td>0e</td>
<td>start of extended text</td>
</tr>
<tr>
<td>0f</td>
<td>start of extended text</td>
</tr>
<tr>
<td>10</td>
<td>start of extended text</td>
</tr>
<tr>
<td>11</td>
<td>start of extended text</td>
</tr>
<tr>
<td>12</td>
<td>start of extended text</td>
</tr>
<tr>
<td>13</td>
<td>start of extended text</td>
</tr>
<tr>
<td>14</td>
<td>start of extended text</td>
</tr>
<tr>
<td>15</td>
<td>start of extended text</td>
</tr>
<tr>
<td>16</td>
<td>start of extended text</td>
</tr>
<tr>
<td>17</td>
<td>start of extended text</td>
</tr>
<tr>
<td>18</td>
<td>start of extended text</td>
</tr>
<tr>
<td>19</td>
<td>start of extended text</td>
</tr>
<tr>
<td>1a</td>
<td>start of extended text</td>
</tr>
<tr>
<td>1b</td>
<td>start of extended text</td>
</tr>
<tr>
<td>1c</td>
<td>start of extended text</td>
</tr>
<tr>
<td>1d</td>
<td>start of extended text</td>
</tr>
<tr>
<td>1e</td>
<td>start of extended text</td>
</tr>
<tr>
<td>1f</td>
<td>start of extended text</td>
</tr>
<tr>
<td>20</td>
<td>space</td>
</tr>
<tr>
<td>21</td>
<td>!</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
</tr>
<tr>
<td>23</td>
<td>#</td>
</tr>
<tr>
<td>24</td>
<td>$</td>
</tr>
<tr>
<td>25</td>
<td>%</td>
</tr>
<tr>
<td>26</td>
<td>&</td>
</tr>
<tr>
<td>27</td>
<td>’</td>
</tr>
<tr>
<td>28</td>
<td>(</td>
</tr>
<tr>
<td>29</td>
<td>)</td>
</tr>
<tr>
<td>2a</td>
<td>*</td>
</tr>
<tr>
<td>2b</td>
<td>+</td>
</tr>
<tr>
<td>2c</td>
<td>,</td>
</tr>
<tr>
<td>2d</td>
<td>-</td>
</tr>
<tr>
<td>2e</td>
<td>.</td>
</tr>
<tr>
<td>2f</td>
<td>/</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>38</td>
<td>8</td>
</tr>
<tr>
<td>39</td>
<td>9</td>
</tr>
<tr>
<td>3a</td>
<td>:</td>
</tr>
<tr>
<td>3b</td>
<td>;</td>
</tr>
<tr>
<td>3c</td>
<td><</td>
</tr>
<tr>
<td>3d</td>
<td>=</td>
</tr>
<tr>
<td>3e</td>
<td>></td>
</tr>
<tr>
<td>3f</td>
<td>?</td>
</tr>
</tbody>
</table>

2-31

2-32

2-33
Interesting Properties of ASCII Code

What is the relationship between a decimal digit ("0", "1", ...) and its ASCII code?

What is the difference between an upper-case letter ("A", "B", ...) and its lower-case equivalent ("a", "b", ...)?

Given two ASCII characters, how do we tell which comes first in alphabetical order?

Unicode: 128 characters are not enough. 1990s Unicode was standardized, Java used Unicode.

No new operations -- integer arithmetic and logic.

Other Data Types

Text strings
- sequence of characters, terminated with NULL (0)
- typically, no hardware support

Image
- array of pixels
 - monochrome: one bit (1/0 = black/white)
 - color: red, green, blue (RGB) components (e.g., 8 bits each)
 - other properties: transparency
- hardware support:
 - typically none, in general-purpose processors
 - MMX -- multiple 8-bit operations on 32-bit word

Sound
- sequence of fixed-point numbers

LC-3 Data Types

Some data types are supported directly by the instruction set architecture.

For LC-3, there is only one hardware-supported data type:
- 16-bit 2’s complement signed integer
- Operations: ADD, AND, NOT

Other data types are supported by interpreting 16-bit values as logical, text, fixed-point, etc., in the software that we write.