
Home Magazine Newsletters Subscribe Articles Tools Polls Jobs Links Search

Four Ways to a Practical Code Review

Jason Cohen, Smart Bear Software, http://www.smartbearsoftware.com/

How to almost get kicked out of a meeting

Two years ago I was not invited to a meeting with the CTO of a billion-dollar software
development shop, but I didn't know that until I walked in the room. I had been asked by the
head of Software Process and Metrics to come and talk about a new type of lightweight code
review that we had some successes with.

But the CTO made it clear that my presence was Not Appreciated.

"You see," he explained, "we already do code inspections. Michael Fagan invented inspections in
1976 and his company is teaching us how to do it." His face completed the silent conclusion: "And
you sir, are no Michael Fagan."

"Currently 1% of our code is inspected," offered the process/metrics advocate. "We believe by the
end of the year we can get it up to 7%." Here Mr. Metrics stopped and shot a glance over to Mr.
CTO. The latter's face fell. Whatever was coming, they obviously had had this discussion before.

"The problem is we can't inspect more than that. Given the number of hours it takes to complete
a Fagan inspection, we don't have the time to inspect more than 7% of the new code we write."

My next question was obvious: "What are you going to do about the other 93%?" Their stares
were equally obvious – my role here was to convince the CTO that we had the answer.

This story has a happy ending, but before we get there I have to explain what it means to
"inspect" code because this is what most developers, managers, and process engineers think of
when they hear "code review." It's the reason this company couldn't review 93% of their code
and why developers hate the idea. And changing this notion of what it means to "review code"
means liberating developers so they can get the benefits of code review without the heavy-weight
process of a formal inspection.

Michael Fagan – father of a legacy

If you've ever read anything on peer code review you know that Michael Fagan is credited with
the first published, formalized system of code review. His technique, developed at IBM in the
mid-1970's, demonstrably removed defects from any kind of document from design specs to
OS/370 assembly code. To this day, any technique resembling his carries his moniker of "code
inspection."

Take a deep breath...

I'm going to describe a "code inspection" in brief, but brace yourself. This is heavyweight process
at its finest, so bear with me. It will all be over soon, I promise. A code inspection consists of
seven phases. In the Planning Phase the author gathers Materials, ensures that they meet the
pre-defined Entry Criteria, and determines who will participate in the inspection. There are four
participants with four distinct roles: The Author, the Moderator, the Reviewer, and the Reader.
Sometimes there is an Observer. All participants need to be invited to the first of several
meetings, and this meeting must be scheduled with the various participants. This first meeting
kicks off the Introduction Phase where the Author explains the background, motivation, and goals
for the review. All participants get printed copies of the Materials. (This important — it's not a

Agile
Development East
Conference

SpiraTeam Agile
Project Tool

Enov8 Agile Tools

Online Training

Software Development Magazine - Programming, Software Testing, Project Management, Jobs

Automated Testing of Desktop, Web and Mobile with Ranorex

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

1 of 8 9/17/2015 9:45 AM

Fagan Inspection unless it's printed out.) The participants schedule the next meeting and leave.
This starts the Reading Phase where each person reads the Materials, but each role reads for a
different purpose and — this is very important — no one identifies defects. When the next
meeting convenes this starts the Inspection Phase. The Moderator sets the pace of this meeting
and makes sure everyone is performing their role and not ruining anything with personal attacks.
The Reader presents the Materials because it was his job to "read for comprehension" since often
someone else's misunderstanding indicates a fault in the Materials. During the meeting a Defect
Log is kept so the Author will know what needs to be fixed. Before the meeting ends, they
complete a rubric that will help with later process improvement. If defects were found the
inspection enters the Rework Phase where the Author fixes the problems, and later there will be a
Verification Phase to make sure the fixes were appropriate and didn't open new defects. Finally
the inspection can enter the Completed Phase.

Figure 1: Typical workflow for a "formal" inspection.

Not shown are the artifacts created by the review: The defect log, meeting notes, and metrics
log. Some inspections also have a closing questionnaire used in the follow-up meeting

...you can let it out now

The good news is, this works. It uncovers defects, it helps when training new hires, and the whole
process can be measured for process insight and improvement. If you have extra money laying
around in your budget, Mr. Fagan himself will even come show you how to do it.

The bad news should be obvious in this day of Agile Methodologies. Studies show that the
average inspection takes 9 man-hours per 200 lines of code, so of course Mr. CTO couldn't do this
for every code change in the company.

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

2 of 8 9/17/2015 9:45 AM

Over the years there have been experiments, case studies, and books on this subject, almost
always using some form of "code inspection" as the basis. In our survey of published case studies
and experiments in the past 20 years, we found that 95% of them tried inspections only in small
pilot groups, and that in no case were they able to apply the technique to all their software
development projects.

If "Agile" can do it, why can't we?

But surely there is another way. Fagan inspections were designed in the days when business logic
was written in assembly language and "computer science" wasn't a major and dinosaurs roamed
the earth.

Have we learned nothing since then? Don't we need different techniques when reading object-
oriented code in a 3-tier application? Don't the challenges of off-shore development require new
processes? Hasn't the rise of Agile Methodologies shown us that we can have process and metrics
and measurement and improvement and happy developers all at the same time?

So finish the story already!

By now you can guess how the story ends. Using arguments not unlike those above, Mr. Metrics
and I convinced Mr. CTO to at least try our lightweight code review technique in a pilot program
with a one development group that was already hopelessly opposed to Fagan inspections. The
metrics that came out of that group demonstrated the effectiveness of the lightweight system,
and within 18 months Code Collaborator was deployed across the entire organization.

What does "lightweight" mean?

Assuming you’ve bought into the argument that code review is good but heavyweight inspection
process is not practical, the next question is: How do we make reviews practical?

We’ll explore four lightweight techniques:

Over-the-shoulder: One developer looks over the author's shoulder as the latter walks
through the code.

1.

Email pass-around: The author (or SCM system) emails code to reviewers2.
Pair Programming: Two authors develop code together at the same workstation.3.
Tool-assisted: Authors and reviewers use specialized tools designed for peer code review.4.

Over-the-shoulder reviews

This is the most common and informal (and easiest!) of code review. An "over-the-shoulder"
review is just that — a developer standing over the author's workstation while the author walks
the reviewer through a set of code changes.

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

3 of 8 9/17/2015 9:45 AM

Figure 1: A typical Over-the-shoulder code walk-through process. Typically, no review artifacts are
created.

Typically, the author "drives" the review by sitting at the keyboard and mouse, opening various
files, pointing out the changes and explaining what he did. The author can present the changes
using various tools and even go back and forth between changes and other files in the project. If
the reviewer sees something amiss, they can engage in a little "spot pair-programming" as the
author writes the fix while the reviewer hovers. Bigger changes where the reviewer doesn't need
to be involved are taken off-line.

With modern desktop-sharing software a so-called "over-the-shoulder" review can be made to
work over long distances, although this can complicate the process because you need to schedule
these sharing meetings and communicate over the phone.

The most obvious advantage of over-the-shoulder reviews is simplicity in execution. Anyone can
do it, any time, without training. It can also be deployed whenever you need it most — an
especially complicated change or an alteration to a "stable" code branch.

Before I list out the pros and cons, I'd like you to consider a certain effect that only this type of
review exhibits. Because the author is controlling the pace of the review, often the reviewer
doesn't get a chance to do a good job. The reviewer might not be given enough time to ponder a
complex portion of code. The reviewer doesn't get a chance to poke around other source files to
check for side-effects or verify that API's are being used correctly.

The author might explain something that clarifies the code to the reviewer, but the next developer
who reads that code won't have the advantage of that explanation unless it is encoded as a
comment in the code. It's difficult for a reviewer to be objective and aware of these issues while
being driven through the code with an expectant developer peering up at him.

So:

Pro: Easy to implement
Pro: Fast to complete
Pro: Might work remotely with desktop-sharing and conference calls
Con: Reviewer led through code at author's pace
Con: Usually no verification that defects are really fixed
Con: Easy to accidentally skip over a changed file
Con: Impossible to enforce the process

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

4 of 8 9/17/2015 9:45 AM

Con: No metrics or process measurement/improvement

Email pass-around reviews

This is the second-most common form of lightweight code review, and the technique preferred by
most open-source projects. Here, whole files or changes are packaged up by the author and sent
to reviewers via email. Reviewers examine the files, ask questions and discuss with the author
and other developers, and suggest changes.

Figure 3. Typical process for an e-mail pass-around review for code already checked into a
version control system. These phases are not this distinct in reality because there’s no tangible
"review" object.

The hardest part of the email pass-around is in finding and collecting the files under review. On
the author's end, he has to figure out how to gather the files together. For example, if this is a
review of changes being proposed to check into version control, the user has to identify all the
files added, deleted, and modified, copy them somewhere, then download the previous versions
of those files (so reviewers can see what was changed), and organize the files so the reviewers
know which files should be compared with which others. On the reviewing end, reviewers have to
extract those files from the email and generate differences between each.

The version control system can assist the process by sending the emails out automatically. The
automation is helpful, but for many code review processes you want to require reviews before
check-in, not after. Like over-the-shoulder reviews, email pass-arounds are fairly easy to
implement. They also work just as well across the hall or across an ocean.

A unique advantage of email-based review is the ease in which other people can be brought into
conversations, whether for expert advice or complete deferral. And unlike over-the-shoulder,
emails don't break developers out of "the zone" as they are working; reviews can be done
whenever the reviewer has a chance.

The biggest drawback to email-based reviews is that they can quickly become an unreadable
mass of comments, replies, and code snippets, especially when others are invited to talk and with
several discussions in different parts of the code. It's also hard to manage multiple reviews at the
same time. Imagine a developer in Hyderabad opening Outlook to discover 25 emails from
different people discussing aspects of three different code changes he's made over the last few
days. It will take a while just to dig though that before any real work can begin.

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

5 of 8 9/17/2015 9:45 AM

Another problem is that there's no indication that the review is "done." Emails can fly around for
any length of time. The review is done when everyone stops talking.

So:

Pro: Fairly easy to implement
Pro: Works with remote developers
Pro: SCM system can initiate reviews automatically
Pro: Easy to involve other people
Pro: Doesn't interrupt reviewers
Con: Usually no verification that defects are really fixed
Con: How do you know when the review is "complete?"
Con: Impossible to know if reviewers are just deleting those emails
Con: No metrics or process measurement/improvement

Pair-programming (review)

Most people associate pair-programming with XP and agile development in general. Among other
things, it's a development process that incorporates continuous code review. Pair-programming is
two developers writing code at a single workstation with only one developer typing at a time and
continuous free-form discussion and review.

Studies of pair-programming have shown it to be very effective at both finding bugs and
promoting knowledge transfer. And some developers really enjoy doing it. (Or did you forget that
making your developers happy is important?)

There's a controversial issue about whether pair-programming reviews are better, worse, or
complementary to more standard reviews. The reviewing developer is deeply involved in the
code, giving great thought to the issues and consequences arising from different
implementations. On the one hand, this gives the reviewer lots of inspection time and a deep
insight into the problem at hand, so perhaps this means the review is more effective. On the
other hand, this closeness is exactly what you don't want in a reviewer; just as no author can see
all typos in his own writing, a reviewer too close to the code cannot step back and critique it from
a fresh and unbiased position. Some people suggest using both techniques — pair-programming
for the deep review and a follow-up standard review for fresh eyes. Although this takes a lot of
developer time to implement, it would seem that this technique would find the greatest number
of defects. We've never seen anyone do this in practice.

The single biggest complaint about pair-programming is that it takes too much time. Rather than
having a reviewer spend 15-30 minutes reviewing a change that took one developer a few days
to make, in pair-programming you have two developers on the task the entire time.

Of course pair-programming has other benefits, but a full discussion of this is beyond the scope of
this article.

So:

Pro: Shown to be effective at finding bugs and promoting knowledge-transfer
Pro: Reviewer is "up close" to the code so can provide detailed review
Pro: Some developers like it
Con: Some developers don't like it
Con: Reviewer is "too close" to the code to step back and see problems
Con: Consumes a lot of up-front time
Con: Doesn't work with remote developers
Con: No metrics or process measurement/improvement

Tool-assisted review

This refers to any process where specialized tools are used in all aspects of the review: collecting
files, transmitting and displaying files, commentary, and defects among all participants, collecting
metrics, and giving product managers and administrators some control over the workflow.

"Tool-assisted" can refer to open-source projects, commercial software, or home-grown scripts.
Either way, this means money — you're either paying for the tool or paying your own folks to
create and maintain it. Plus you have to make sure the tool matches your desired workflow, and

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

6 of 8 9/17/2015 9:45 AM

not the other way around.

Therefore, the tool had better provide many advantages if it is to be worthwhile. Specifically, it
needs to fix the major problems of the foregoing types of review with:

Automated File-Gathering: As we discussed in email pass-around, developers shouldn't be
wasting their time collecting "files I've changed" and all the differences. Ideally, the tool should
be able to collect changes before they are checked into version control or after.

Combined Display: Differences, Comments, Defects: One of the biggest time-sinks with any
type of review is in reviewers and developers having to associate each sub-conversation with a
particular file and line number. The tool must be able to display files and before/after file
differences in such a manner that conversations are threaded and no one has to spend time
cross-referencing comments, defects, and source code.

Automated Metrics Collection: On one hand, accurate metrics are the only way to understand
your process and the only way to measure the changes that occur when you change the process.
On the other hand, no developer wants to review code while holding a stopwatch and wielding
line-counting tools. A tool that automates the collection of key metrics is the only way to keep
developers happy (i.e., no extra work for them) and get meaningful metrics on your process. A
full discussion of review metrics and what they mean (and don't mean) will appear in another
article, but your tool should at least collect these three things: kLOC/hour (inspection rate),
defects/hour (defect rate), and defects/kLOC (defect density).

Workflow Enforcement: Almost all other types of review suffer from the problem of product
managers not knowing whether developers are reviewing all code changes or whether reviewers
are verifying that defects are indeed fixed and didn't cause new defects. A tool should be able to
enforce this workflow at least at a reporting level (for passive workflow enforcement) and at best
at the version control level (with server-side triggers).

Clients and Integration: Some developers like command-line tools. Others need integration
with IDE's and version control GUI clients. Administrators like zero-installation web clients and
Web Services API's. It's important that a tool supports many ways to read and write data in the
system.

If your tool satisfies this list of requirements, you'll have the benefits of email pass-around
reviews (works with multiple, possibly-remote developers, minimizes interruptions) but without
the problems of no workflow enforcement, no metrics, and wasting time with file/difference
packaging, delivery, and inspection.

It's impossible to give a proper list of pros and cons for tool-assisted reviews because it depends
on the tool's features. But if the tool satisfies all the requirements above, it should be able to
combat all the "cons" above.

So what do I do?

All of the techniques above are useful and will result in better code than you would otherwise
have.

To pick the right one for you, start with the top of the list and work your way down. The first few
are the simplest, so if you’re willing to live with the downsides, stop there. Tool-assisted review
has the most potential to remove downside, but you’ll have to commit to a trial period,
competitive analysis, and possibly some budget allocation.

No matter what you pick, your developers will find that code review is a great way to find bugs,
mentor new hires, and share information. Just make sure you implement a technique that doesn’t
aggravate them so much that they revolt.

More Java and Software Testing and Quality Resources

Article: Software Inspections

Software Testing Magazine

Software Quality Assurance Portal

Four Ways to a Practical Code Review http://www.methodsandtools.com/archive/archive.php?id=66

7 of 8 9/17/2015 9:45 AM

