Course Introduction

“For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new light on some aspect of computing.” - Francis Sullivan

Course Objectives

Algorithms:
- Design - strategies for algorithmic problem solving
 - advanced data structures and their use in algorithms
- Reasoning about algorithm correctness
- Analysis of time and space complexity
- Implementation - create an implementation that respects the runtime analysis

Algorithmic Approaches / Classes:
- Greedy
- Divide and Conquer
- Dynamic programming

Problem Classes:
- P: Polynomial, NP: Non deterministic Polynomial

Parallel Algorithms:
- Dynamic Multi-threading
Grading

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites Exam (wk 2)</td>
<td>10%</td>
</tr>
<tr>
<td>Programming Assignments</td>
<td>15%</td>
</tr>
<tr>
<td>Written Assignments</td>
<td>15%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>10%</td>
</tr>
<tr>
<td>Exams</td>
<td>50%</td>
</tr>
</tbody>
</table>

See CS320 web site, let’s go there now

Implementation

Programs will be written in Python:
- Powerful **data structures**
 - tuples, dictionaries, (array)lists
- Simple, easy to learn syntax
- Highly readable, compact code
- Supports object oriented and functional programming
- An extensive standard library
- Strong support for integration with other languages (C, C++, Java) and libraries (numpy, jupyter, CUDA)

We assume you know Python (from CS220)!
Python vs. e.g. Java

What makes Python different from Java?

- Java is statically typed, i.e. variables are bound to types at compile time. This avoids run time errors, but makes Java programs more rigid.

- Python is dynamically typed, i.e. a variable takes on some type at run time, and its type can change. A variable can be of one type somewhere in the code and of another type somewhere else

  ```python
  # line is a String here
  line = line.strip().split(" ")
  # line is an (Array)List of Strings here
  ```

- This makes Python programs more flexible, but can cause strange run time errors, e.g. when a caller expects a return value but the called function does not return one.

Does anyone else use Python?

One of the three “official languages” in Google. (Guido van Rossum, creator of Python, was a Googler (and also a researcher at the Mathematical Center in Amsterdam))

Peter Norvig, Director of Research at Google:

“Python has been an important part of Google since the beginning, and remains so as the system grows and evolved. Today dozens of Google engineers use Python, and we’re looking for more people with skills in this language”

Yahoo groups, Yahoo maps -- 100% python
Our approach to problem solving

- Formulate it with precision (usually using mathematical concepts, such as sets, relations, and graphs)
- Design an algorithm and its main data structures
- Prove its correctness
- Analyze its complexity (time, space)
 - Improve the initial algorithm (in terms of complexity), preserving correctness
- Implement it, preserving the analyzed complexity! In the lab PAs we will test for that. So in this course we check for correctness and complexity of your PAs.

Our first problem: matching

Two parties e.g., companies and applicants

- Each applicant has a preference list of companies
- Each company has a preference list of applicants
- A possible scenario:
 - cA offers job to aA
 - aA accepts, but now gets offer from cX
 - aA likes cX more, retracts offer from cA
 - now cA offers job to aB, who retracts his acceptance of an offer from cB
- We would like a systematic method for assigning applicants to companies- stable matching
- A system like this is in use for matching medical residents with hospitals
Stable Matching

Goal. Given a set of preferences among companies and applicants, design a stable matching process (matching is both a noun and a verb).

Unstable pair: applicant x and company y are an unstable pair (not in the current matching) if:
- x prefers y to its assigned company and
- y prefers x to one of its selected applicants.

Stable assignment. Assignment without unstable pairs.
- Natural and desirable condition.

Is some control possible?

Given the preference lists of applicants A and companies C, can we assign As to Cs such that

for each C
- for each A not scheduled to work for C
 - either C prefers all its applicants to A
 - or A prefers current company to C

If this holds, then what?
Stable state

Given the preference lists of applicants A and of companies C, can we assign As to Cs such that

for each C
 for each A not scheduled to work for C
 C prefers all its applicants to A
 or A prefers current company to C

If this holds, there is no unstable pair, and therefore individual self interest will prevent changes in applicant / company matches:

Stable state

Simplifying the problem

Matching applicants/companies problem a bit messy:

- Company may look for multiple applicants, applicants looking for a single internship
- Maybe there are more jobs than applicants, or fewer jobs than applicants
- Maybe some applicants/jobs are equally liked by companies/applicants (partial orders)

Formulate a "bare-bones" version of the problem
Stable Matching Problem

A matching: a subset of ordered pairs, from $M \times W$ where every man and woman appears at most once.

A perfect [Sanjay prefers the term "complete"] matching: a matching where every man and woman appears exactly once.

Stability: no incentive for some pair to undermine the assignment.

- A pair (m,w) NOT IN THE CURRENT MATCHING is an instability if man m and woman w prefer each other to current partners in the matching.
- Both m and w can improve their situation

Stable matching: perfect matching with no unstable pairs. Stable matching problem: Given the preference lists of n men and n women, find a stable matching if one exists.

The Stable Matching Problem

Problem: Given n men and n women where
- Each man lists women in total order of preference
- Each woman lists men in total order of preference

- What is a total order? Do you know an example?
- Do you know a counter example?

Men’s Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

Women’s Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
<tr>
<td>Zeus</td>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
</tbody>
</table>

find a stable matching of all men and women
Formulation

Men: $M = \{m_1, \ldots, m_n\}$ Women: $W = \{w_1, \ldots, w_n\}$

The Cartesian Product $M \times W$ is the set of all possible ordered pairs.

A matching S is a set of pairs (subset of $M \times W$) such that each m and w occurs in at most one pair.

A perfect matching S is a set of pairs (subset of $M \times W$) such that each individual occurs in exactly one pair.

How many perfect matchings are there?

Instability

Given a perfect match, eg

$$S = \{(m_1, w_1), (m_2, w_2)\}$$

But m_1 prefers w_2 and w_2 prefers m_1.

(m_1, w_2) is an instability for S.

(notice that (m_1, w_2) is not in S)

S is a stable matching if:
- S is perfect
- and there is no instability w.r.t. S
Example 1

m_1: w_1, w_2 \hspace{1cm} m_2: w_1, w_2

w_1: m_1, m_2 \hspace{1cm} w_2: m_1, m_2

What are the perfect matchings?

Example 1

m_1: w_1, w_2 \hspace{1cm} m_2: w_1, w_2

w_1: m_1, m_2 \hspace{1cm} w_2: m_1, m_2

1. \{ (m_1, w_1), (m_2, w_2) \}
2. \{ (m_1, w_2), (m_2, w_1) \}

which is stable/unstable?
Example 1

\[m_1: w_1, w_2 \quad m_2: w_1, w_2\]

\[w_1: m_1, m_2 \quad w_2: m_1, m_2\]

1. \{(m_1,w_1), (m_2,w_2)\} stable, WHY?
2. \{(m_1,w_2), (m_2,w_1)\} unstable, WHY?

Example 2

\[m_1: w_1, w_2 \quad m_2: w_2, w_1\]

\[w_1: m_2, m_1 \quad w_2: m_1, m_2\]

1. \{(m_1,w_1), (m_2,w_2)\}
2. \{(m_1,w_2), (m_2,w_1)\}

which is / are unstable/stable?

Conclusion?
Example 3

\[m_1: w_1, w_2, w_3 \quad m_2: w_2, w_3, w_1 \quad m_3: w_3, w_1, w_2 \]
\[w_1: m_2, m_1, m_3 \quad w_2: m_1, m_2, m_3 \quad w_3: m_1, m_2, m_3 \]

Is \(\{(m_1, w_1), (m_2, w_2), (m_3, w_3)\} \) stable?

Is \(\{(m_1, w_2), (m_2, w_1), (m_3, w_3)\} \) stable?

Questions...

- Given a preference list, does a stable matching exist?
- Can we efficiently construct a stable matching if there is one?
- A naive algorithm:

 for \(S \) in the set of all perfect matchings:

 if \(S \) is stable:
 return \(S \)

 return None

 Is this algorithm correct?
 What is its running time?
Towards an algorithm

initially: no match

An unmatched man m proposes to the woman w highest on his list.
Will this be part of a stable matching?

Towards an algorithm

initially: no match

An unmatched man m proposes to the woman w highest on his list.
Will this be part of a stable matching?
Not necessarily: w may like some m' better, AND?

So w and m will be in a temporary state of engagement.

w is prepared to change her mind when a man higher on her list proposes.
While not everyone is matched...

An unmatched man \(m \) proposes to the woman \(w \) highest on his list that he hasn't proposed to yet.

If \(w \) is free, they become engaged

If \(w \) is engaged to \(m' \):
 If \(w \) prefers \(m' \) over \(m \), \(m \) stays free
 If \(w \) prefers \(m \) over \(m' \), \((m,w)\) become engaged

The Gale-Shapley algorithm\(^1\)

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman)
 Choose such a man \(m \)
 \(w = \) highest-ranked woman on \(m \)'s list to whom \(m \) has not yet proposed
 if (\(w \) is free)
 \((m,w)\) become engaged
 else if (\(w \) prefers \(m \) to her fiancé \(m' \))
 \((m,w)\) become engaged, \(m' \) becomes free
 else
 \(m \) remains free

A few non-obvious questions:
 How long does it take?
 Does the algorithm return a stable matching?
 Does it even return a perfect matching?

Observations

Each woman w remains engaged from the first proposal and the sequence of w's partners gets better
Each man proposes to less and less preferred women and will not propose to the same woman twice

 CLAIM. The algorithm terminates after at most n^2 iterations of the while loop.
Observations

Claim. The algorithm terminates after at most n^2 iterations of the while loop.

At each iteration a man proposes (only once) to a woman he has never proposed to, and there are only n^2 possible pairs (m,w)

WHY ONLY n^2?

only n choices for each of the n men

Proof: By contradiction. Assume there is a free man, m.

Because the loop terminates, m proposed to all women

But then all women are engaged, hence there is no free man

\rightarrow Contradiction

Observations

Initialize each person to be free.

while (some man is free and hasn't proposed to every woman)

Choose such a man m

$w =$ highest-ranked woman on m's list to whom m has not yet proposed

if (w is free)

(m,w) become engaged

else if (w prefers m to her fiancé m')

(m,w) become engaged, m' becomes free

else

m remains free

When the loop terminates, the matching is perfect
Proof of Correctness: Stability

Claim. No unstable pairs. Proof. (by contradiction)

- Suppose \((m, w)\) is an unstable pair: each prefers each other to partner in Gale-Shapley matching \(S^*\).

- Case 1: \(m\) never proposed to \(w\).
 \[\Rightarrow m\] prefers his GS partner \(w'\) to \(w\).
 \(\Rightarrow (m, w)\) is not unstable.

- Case 2: \(m\) proposed to \(w\).
 \[\Rightarrow w\] rejected \(m\) (right away or later).
 \[\Rightarrow w\] prefers her GS partner \(m'\) to \(m\). \(\Rightarrow (m, w)\) is not unstable.

- In either case \((m, w)\) is not unstable, a contradiction. □

Summary

Stable matching problem. Given \(n\) men and \(n\) women and their preferences, find a stable matching if one exists.

Gale-Shapley algorithm. Guaranteed to find a stable matching for any problem instance.

Q. If there are multiple stable matchings, which one does GS find?
Which solution?

\[m_1: w_1, w_2 \quad m_2: w_2, w_1 \]
\[w_1: m_2, m_1 \quad w_2: m_1, m_2 \]

Two stable solutions
1: \(\{(m_1,w_1), (m_2,w_2)\} \)
2: \(\{(m_1,w_2), (m_2,w_1)\} \)

GS will always find one of them (which?)

When will the other be found?

Symmetry

The stable matching problem is symmetric w.r.t. to men and women, but the GS algorithm is asymmetric.

There is a certain unfairness in the algorithm:
If all men list different women as their first choice, they will end up with their first choice, regardless of the women’s preferences (see example 3).
Non-determinism

Notice the following line in the GS algorithm:

```
while (some man is free and hasn't proposed to every woman)
    Choose such a man m
```

The algorithm does not specify WHICH

Still, it can be shown that all executions of the algorithm find the same stable matching.

This ends our discussion of stable matching.
Remember the problem solving paradigm

1. Formulate it with precision (usually using mathematical concepts, such as sets, relations, and graphs, costs, benefits, optimization criteria)

2. Design an algorithm

3. Prove its correctness, e.g. in terms of pre and post conditions

4. Analyze its complexity

5. Implement respecting the derived complexity

Often, steps 2-5 are repeated, to improve efficiency

Interval Scheduling

You have a resource (hotel room, printer, lecture room, telescope, manufacturing facility, professor...)

There are requests to use the resource in the form of start time s_i and finish time f_i, such that $s_i < f_i$

Objective: grant as many requests as possible. Two requests i and j are compatible if they don’t overlap, i.e. $f_i \leq s_j$ or $f_j \leq s_i$
Interval Scheduling

Input. Set of jobs with start times and finish times.
Goal. Find maximum cardinality subset of compatible jobs.

What happens if you pick the first starting (a)?, the smallest (c)? What is the optimum?

Algorithmic Approach

The interval scheduling problem is amenable to a very simple solution.

Now that you know this, can you think of it?

Hint: Think how to pick a first interval while preserving the longest possible free time...
Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and profits.

Goal. Find maximum profit subset of compatible jobs.

Bipartite Matching

Stable matching was defined as matching elements of two disjoint sets.

We can express this in terms of graphs.

A graph is **bipartite** if its nodes can be partitioned into two sets X and Y, such that the edges are between an x in X and a y in Y.
Bipartite Matching

Input. Bipartite graph.

Goal. Find **maximum cardinality** matching.

Matching in bipartite graphs can model **assignment** problems, e.g., assigning jobs to machines, where an edge between a job j and a machine m indicates that m can do job j, or professors and courses.

How is this different from the stable matching problem?

Independent Set

Input. Graph.

Goal. Find **maximum cardinality** independent set:

subset of nodes such that no two are joined by an edge

Can you formulate interval scheduling as an independent set problem? If so, how could you solve the interval scheduling problem?
Independent set problem

- There is no known efficient way to solve the independent set problem.
- But we just said: we can formulate interval scheduling as independent set problem..... ???
- What does "no efficient way" mean?
- The only solution we have so far is trying all sub sets and finding the largest independent one.
- How many sub sets of a set of n nodes are there?

Representative Problems / Complexities

Looking ahead...

- Interval scheduling: \(n \log(n) \) greedy algorithm.
- Weighted interval scheduling: \(n \log(n) \) dynamic programming algorithm.
- Independent set: NP (no known polynomial algorithm exists).
Algorithm

Algorithm: effective procedure
- mapping input to output
effective: unambiguous, executable
 - Turing defined it as: "like a Turing machine"
- program = effective procedure

Is there an algorithm for every possible problem?

Algorithm

Algorithm: effective procedure
- mapping input to output
effective: unambiguous, executable
 - Turing defined it as: "like a Turing machine"
- program = effective procedure

Is there an algorithm for every possible problem?

No, the problem must be effectively specified: "how many angels can dance on the head of a pin?" not effective. **Even if** it is effectively specified, there is not always an algorithm to provide an answer. This occurs often for programs analyzing programs (examples?)
Ulam's problem

```python
def f(n):
    if n==1: return 1
    elif odd(n): return f(3*n+1)
    else: return f(n/2)
```

Does f(n) always stop?

Ulam's problem

```python
def f(n):
    if n==1: return 1
    elif odd(n): return f(3*n+1)
    else: return f(n/2)
```

Steps in running f(n) for a few values of n:

1
2, 1
3, 10, 5, 16, 8, 4, 2, 1
4, 2, 1
5, 16, 8, 4, 2, 1
6, 3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
8, 4, 2, 1
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
10, 5, 16, 8, 4, 2, 1

Does f(n) always stop?
Ulam's problem

```python
def f(n):
    if n==1:
        return 1
    elif odd(n):
        return f(3*n+1)
    else:
        return f(n/2)
```

Nobody has found an n for which f does not stop.

Nobody has found a proof (so there can be no algorithm deciding this) that f stops for all n.

A generalization of this problem has been proven to be undecidable. It is called the Halting Problem.

A problem P is undecidable, if there is no algorithm that produces $P(x)$ for every possible input x.

The Halting Problem is undecidable

Given a program P and input x

will P stop on x?

We can prove (cs420):

the halting problem is undecidable

i.e. there is no algorithm $Halt(P,x)$ that for any program P and input x decides whether P stops on x.

But for some “nice” programs, we can prove they halt.
Verification/equivalence undecidable

Given any specification \(S \) and any program \(P \), there is no algorithm that decides whether \(P \) executes according to \(S \).

Given any two programs \(P_1 \) and \(P_2 \), there is no algorithm that decides \(\forall x: P_1(x) = P_2(x) \).

Does this mean we should not build program verifiers?

Intractability

Suppose we have a program,
- does it execute a in a reasonable time?
- E.g., towers of Hanoi (cs200).

Three pegs, one with \(n \) smaller and smaller disks, move (1 disk at the time) to another peg without ever placing a larger disk on a smaller.

\[f(n) = \# \text{ moves for tower of size } n \]

Monk: before a tower of Hanoi of size 100 is moved, the world will have vanished.
def hanoi(n, from, to):
 if (n>0):
 via = 6 - from - to
 hanoi(n-1,from, via)
 print "move disk", n, "from", from, "to", to
 hanoi(n-1,via,to);

pegs are numbers, via is computed
empty base case
hanoi(n,from,to):

f(n): #moves in hanoi

f(n) = 2f(n-1) + 1, f(1)=1
f(1) = 1, f(2) = 3, f(3) = 7, f(4) = 15
f(n) = 2^n-1

Can you write an iterative Hanoi algorithm?

Was the monk right?

2^{100} moves, say 1 per second.....

How many years?
Is there a better algorithm?

THE ONE MILLION DOLLAR QUESTION IN THIS CLASS

Is there a better algorithm?

Pile(n-1) must be
 \textbf{off peg1}
and
 \textbf{completely on one other peg}
before disk n can be moved to its destination

so (inductively) all moves are necessary
Algorithm complexity

Measures in units of time and space

Linear Search X in dictionary D

\[
\begin{align*}
\text{i} &= 1 \\
\text{while not at end and } X \neq D[i]: \\
\text{i} &= i + 1
\end{align*}
\]

We don't know if X is in D, and we don't know where it is, so we can only give worst or average time bounds.

We don't know the time for atomic actions, so we only determine **Orders of Magnitude**

Linear Search: time and space complexity

Space: n locations in D plus some local variables

Time:
In the worst case we search all of D, so the loop body is executed n times.

In average case analysis we compute the expected number of steps: i.e., we sum the products of the probability of each option and the time cost of that option. In the average case the loop body is executed about \(n/2\) times.

\[
\sum_{i=1}^{n} \frac{1}{n} i = \frac{1}{n} \sum_{i=1}^{n} i = \frac{(n(n+1)/2)}{n} = \frac{n}{2}
\]