Dynamic Programming

Cormen et. al. IV 15

Motivating Example: Fibonacci numbers

\[F(1) = F(2) = 1 \]
\[F(n) = F(n-1) + F(n-2) \quad n>2 \]
Fibonacci numbers

F(1) = F(2) = 1
F(n) = F(n-1) + F(n-2) \quad n>2

Simple recursive solution:

```
def fib(n):
    if n<=2: return 1
    else: return fib(n-1) + fib(n-2)
```

What is the size of the call tree?

Problem: exponential call tree

Can we avoid it?
Efficient computation using a memo table

def fib(n, table):
 # pre: n>0, table[i] either 0 or contains fib(i)
 if n <= 2:
 return 1
 if table[n] > 0:
 return table[n]
 result = fib(n-1, table) + fib(n-2, table)
 table[n] = result
 return result

We use a memo table, never computing the same value twice. How many calls now? \(O(n)\)
Can we do better?

Look ma, no table

def fib(n):
 if n<=2: return 1
 a, b = 1
 c = 0
 for i in range(3, n+1):
 c = a + b
 a = b
 b = c
 return c

Compute the values "bottom up"
Avoid the table, only store the previous two
same \(O(n)\) time complexity, constant space.

Only keeping the values we need.
Optimization Problems

In optimization problems a set of choices are to be made to arrive at an optimum, and sub problems are encountered.

This often leads to a recursive definition of a solution. However, the recursive algorithm is often inefficient in that it solves the same sub problem many times.

Dynamic programming avoids this repetition by solving the problem bottom up and storing sub solutions, that are (still) needed.

Dynamic vs Greedy, Dynamic vs Div&Co

Compared to Greedy, there is no predetermined local choice of a sub solution, but a solution is chosen by computing a set of alternatives and picking the best.

Another way of saying this is: Greedy only needs ONE best solution.

Dynamic Programming builds on the recursive definition of a divide and conquer solution, but avoids re-computation by storing earlier computed values, thereby often saving orders of magnitude of time.

Fibonacci: from exponential to linear
Dynamic Programming

Dynamic Programming has the following steps

- Characterize the structure of the problem, i.e., show how a larger problem can be solved using solutions to sub-problems
- Recursively define the optimum
- Compute the optimum bottom up, storing values of sub solutions
- Construct the optimum from the stored data

Optimal substructure

Dynamic programming works when a problem has optimal substructure: we can construct the optimum of a larger problem from the optima of a "small set" of smaller problems.

- small: polynomial

Not all problems have optimal substructure. Travelling Salesman Problem (TSP) does not have optimal substructure.
Weighted Interval Scheduling

We studied a greedy solution for the interval scheduling problem, where we searched for the maximum number of compatible intervals.

If each interval has a weight and we search for the set of compatible intervals with the maximum sum of weights, no greedy solution is known.

Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum value subset of compatible jobs.
Weighted Interval Scheduling

Assume jobs sorted by finish time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
\(p(j) \) = largest index \(i < j \) such that job \(i \) is compatible with \(j \),
in other words: \(p(j) \) is \(j \)'s latest predecessor; \(p(j) = 0 \) if \(j \) has no predecessors. Example: \(p(8) = 5, p(7) = 3, p(2) = 0 \).
Using \(p(j) \) can you think of a recursive solution?

Recursive (either / or) Solution

Notation. \(\text{OPT}(j) \): optimal value to the problem consisting of job requests 1, 2, ..., \(j \).

- Case 1: \(\text{OPT}(j) \) includes job \(j \).
 - add \(v_j \) to total value
 - can’t use incompatible jobs \{ \(p(j) + 1, p(j) + 2, \ldots, j - 1 \) \}
 - must include optimal solution to problem consisting of remaining compatible jobs \(1, 2, \ldots, p(j) \)

- Case 2: \(\text{OPT}(j) \) does not include job \(j \).
 - must include optimal solution to problem consisting of remaining compatible jobs \(1, 2, \ldots, j - 1 \)

\[
\text{OPT}(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \left\{ v_j + \text{OPT}(p(j)), \text{OPT}(j - 1) \right\} & \text{otherwise}
\end{cases}
\]
Either / or recursion

This is very often a first recursive solution method:

- either some item is in and then there is some consequence
- or it is not, and then there is another consequence, e.g. knapsack, see later slides:

Here: for each job \(j \)

- either \(j \) is chosen
 - add \(v_j \) to the total value
 - consider \(p_j \) next

- or it is not
 - total value does not change
 - consider \(j-1 \) next

Weighted Interval Scheduling: Recursive Solution

input: \(s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

compute \(p(1), p(2), \ldots, p(n) \)

\[
\text{Compute-Opt}(j) \{ \\
\quad \text{if} \ (j == 0) \\
\quad \quad \text{return} \ 0 \\
\quad \text{else} \\
\quad \quad \text{return} \ \max(v_j + \text{Compute-Opt}(p(j)), \text{Compute-Opt}(j-1)) \\
\}
\]

What is the size of the call tree here?
How can you make it big, e.g. exponential?
Analysis of the recursive solution

Observation. Recursive algorithm considers exponential number of (redundant) sub-problems.

Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

![Fibonacci sequence diagram]

\[
p(1) = 0, p(j) = j-2
\]

Code on previous slide becomes Fibonacci: \(\text{opt}(j) \) calls \(\text{opt}(j-1) \) and \(\text{opt}(j-2) \)

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; look up as needed.

input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

compute \(p(1), p(2), \ldots, p(n) \)

for \(j = 1 \) to \(n \)

\[M[j] = \text{empty} \]

\[M[0] = 0 \]

M-Compute-Opt \(j \) \{
 \text{if} (M[j] \text{ is empty})
 \[M[j] = \max(v_j + \text{M-Compute-Opt}(p(j)), \]
 \[\text{M-Compute-Opt}(j-1)) \]
\}

return \(M[j] \)
Weighted Interval Scheduling: Running Time

Claim. Memoized version of M-$Compute$-$Opt(n)$ takes $O(n \log n)$ time.

- M-$Compute$-$Opt(n)$ fills in all entries of M ONCE in constant time
- Since M has $n+1$ entries, this takes $O(n)$

- But we have sorted the jobs
- So Overall running time is $O(n \log n)$.

Weighted Interval Scheduling: Finding a Solution

Question. Dynamic programming computes optimal value. What if we want the choice vector determining which intervals are chosen.

Answer. Do some post-processing, walking BACK through the dynamic programming table.

```plaintext
Run Dynpro-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
    if (j = 0)
        output nothing
    else if ($v_j + M[p(j)] > M[j-1]$)
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming, build a table.

input: $n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n$

sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

compute $p(1), p(2), \ldots, p(n)$

Dynpro-Opt {
 $M[0] = 0$
 for $j = 1$ to n
 $M[j] = \max(v_j + M[p(j)], M[j-1])$
}

By going in bottom up order $M[p(j)]$ and $M[j-1]$ are present when $M[j]$ is computed. This takes $O(n \log n)$ for sorting and $O(n)$ for Compute, so $O(n \log n)$

Do it, do it: Recursive

<table>
<thead>
<tr>
<th>S</th>
<th>F</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

Sort in F order: A, B, C, D, E, F

Determine p array:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>3</td>
</tr>
</tbody>
</table>

$6, F + 3, E + 2, B = 19$

Do the recursive algorithm.

Left: take $+v$ next $p(j)$. Right: don’t take 0, next $j-1$

Up: edge: add, node: take the max
Do it, do it: Dynamic Programming

<table>
<thead>
<tr>
<th>S</th>
<th>F</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>F</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

M[0] = 0
for j = 1 to n
M[j] = max(v_j + M[p(j)], M[j-1])

Draw Intervals

Sort in F order

Determine p array

<table>
<thead>
<tr>
<th>Sort in F order</th>
<th>Determine p array</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A</td>
<td>1A: 0</td>
</tr>
<tr>
<td>2 B</td>
<td>2B: 0</td>
</tr>
<tr>
<td>3 E</td>
<td>3E: 2B</td>
</tr>
<tr>
<td>4 D</td>
<td>4D: 1A</td>
</tr>
<tr>
<td>5 C</td>
<td>5C: 0</td>
</tr>
<tr>
<td>6 F</td>
<td>6F: 3E</td>
</tr>
</tbody>
</table>

Create M table

Walk back to determine choices

6,F: take gets you 19, don't gets you 18, so take F
3,E: take gets you 18, don't gets you 8, so take E
2,B: take gets you 8, don't gets you 0, so take B

Computing the p array

Claim. Memoized version of M-Compute-Opt(n) takes O(n log n) time.

- M-Compute-Opt(n) fills in all entries of M ONCE in constant time
- Since M has n+1 entries, this takes O(n)

- But we have sorted the jobs
- So Overall running time is O(n log n).
Computing the latest-predecessor array

Visually, it is "easy" to determine \(p(i) \), the largest index \(i < j \) such that job \(i \) is compatible with \(j \). For the example below:

\[p[1...8] = [0, 0, 0, 1, 0, 2, 3, 5] \]

How about an algorithm? Or even as a human, try it without the visual aid (give it 5 minutes)

<table>
<thead>
<tr>
<th>Activity</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start (s)</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Finish (f)</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>(p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computing the latest-predecessor array

Spoiler alert:

1. Treat all the start and finish times as “events” and sort them in increasing order (resolve ties any way, as long as all the f events are before the s events)
2. Have global variables LFSF and IFLSF (for "Latest_Finish_So_Far," and "Index_of_LFSF")
3. Process events in order as follows:
 a. If it is a finish event, f, then update LFSF and IFLSF
 b. If it is a start event, s, then set p(i) to ILFSF

<table>
<thead>
<tr>
<th>Evnt</th>
<th>LFSF</th>
<th>IFLSF</th>
<th>p(x)=y</th>
</tr>
</thead>
<tbody>
<tr>
<td>s3</td>
<td>0</td>
<td>0</td>
<td>p(3)=0</td>
</tr>
<tr>
<td>s1</td>
<td>0</td>
<td>0</td>
<td>p(1)=0</td>
</tr>
<tr>
<td>s2</td>
<td>0</td>
<td>0</td>
<td>p(2)=0</td>
</tr>
<tr>
<td>s5</td>
<td>0</td>
<td>0</td>
<td>p(5)=0</td>
</tr>
<tr>
<td>f1</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>s4</td>
<td>4</td>
<td>1</td>
<td>p(4)=1</td>
</tr>
<tr>
<td>f2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>s6</td>
<td>5</td>
<td>2</td>
<td>p(6)=2</td>
</tr>
<tr>
<td>f3</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>6</td>
<td>3</td>
<td>p(7)=3</td>
</tr>
<tr>
<td>f4</td>
<td>7</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>f5</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>s8</td>
<td>8</td>
<td>5</td>
<td>p(8)=5</td>
</tr>
<tr>
<td>f6</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>f7</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>f8</td>
<td>11</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Discrete Optimization Problems

Discrete Optimization Problem (S,f)

- **S:**
 - Set of solutions of a problem, satisfying some constraint
- **f : S → R**
 - Cost function associated with feasible solutions
- **Objective:** find an optimal solution x_{opt} such that
 - $f(x_{opt}) \leq f(x)$ for all x in S (minimization)
 - $f(x_{opt}) \geq f(x)$ for all x in S (maximization)

- Ubiquitous in many application domains
 - planning and scheduling
 - VLSI layout
 - pattern recognition
 - bio-informatics
Knapsack Problem

- Given n objects and a "knapsack" of capacity W
- Item i has a weight $w_i > 0$ and value or profit $v_i > 0$.
- Goal: fill knapsack so as to maximize total value.

What would be a Greedy solution?
- repeatedly add item with maximum v_i / w_i ratio ...

Does Greedy work?

Capacity $M = 7$, Number of objects $n = 3$

\[w = [5, 4, 3] \]
\[v = [10, 7, 5] \] (ordered by v_i / w_i ratio)

Either / or Recursion for Knapsack Problem

Notation: $OPT(i, w) =$ optimal value of max weight subset that uses items 1, ..., i with weight limit w.

- Case 1: item i is not included:
 - OPT includes best of \{ 1, 2, ..., $i-1$ \} using weight limit w

- Case 2: item i is included, if it can be included: $w_i <= w$
 - new weight limit = $w - w_i$
 - OPT includes best of \{ 1, 2, ..., $i-1$ \} using weight limit $w - w_i$

\[
OPT(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
OPT(i-1, w) & \text{if } w_i > w \\
\max \{ OPT(i-1, w), \ v_i + OPT(i-1, w - w_i) \} & \text{otherwise}
\end{cases}
\]
Knapsack Problem: Dynamic Programming

Knapsack. Fill an n+1 by W+1 array.

Input: n, W, weights w_1, \ldots, w_n, values v_1, \ldots, v_n

for $w = 0$ to W
 $M[0, w] = 0$

for $i = 1$ to n
 for $w = 0$ to W
 if $w_i > w$
 $M[i, w] = M[i-1, w]$
 else:
 $M[i, w] = \max (M[i-1, w], v_i + M[i-1, \text{w} - w_i])$

return $M[n, W]$

Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

$W = 11$
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11

At 1,1 we can fit item 1 and from then on, all we have is item 1.

At 2,2 we can either not take item 2 (value 1 (previous row[2])) or we can take item 2 (value 6 previous row[0]+ 6).

At 2,3 we can either not take item 2 (value 1) or we can take item 2 and item 1 (value 7). From then on we can fit both items 1 and 2 (value 7).
Knapsack Algorithm

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

OPT: 40

How do we find the objects in the optimum solution?

Walk back through the table!!
Knapsack Algorithm

\[\text{OPT: } 40 \]
\n\[n=5 \text{ Don't take object 5 (7+28<40)} \]

\[W = 11 \]

\[1 \{1\} \{1, 2\} \{1, 2, 3\} \{1, 2, 3, 4\} \{1, 2, 3, 4, 5\} \]

\[\text{Item} \quad \text{Value} \quad \text{Weight} \]
\[1 \quad 1 \quad 1 \]
\[2 \quad 6 \quad 2 \]
\[3 \quad 18 \quad 5 \]
\[4 \quad 22 \quad 6 \]
\[5 \quad 28 \quad 7 \]

Knapsack Algorithm

\[\text{OPT: } 40 \]
\n\[n=5 \text{ Don't take object 5 (7+28<40)} \]

\[W = 11 \]

\[1 \{1\} \{1, 2\} \{1, 2, 3\} \{1, 2, 3, 4\} \{1, 2, 3, 4, 5\} \]

\[\text{Item} \quad \text{Value} \quad \text{Weight} \]
\[1 \quad 1 \quad 1 \]
\[2 \quad 6 \quad 2 \]
\[3 \quad 18 \quad 5 \]
\[4 \quad 22 \quad 6 \]
\[5 \quad 28 \quad 7 \]
Knapsack Algorithm

```
<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>
```

OPT: 40
n=5 Don't take object 5
n=4 Take object 4
n=3 Take object 3

and now we cannot take anymore, so choice set is {3,4}, choice vector is [0,0,1,1,0]

Knapsack Problem: Running Time

Running time. $\Theta(nW)$.
- Not polynomial in input size!
 - W can be exponential in n

- Decision version of Knapsack is NP-complete.
 [Chapter 34 CLRS]

Knapsack approximation algorithm.
- There exists a poly-time algorithm that produces a feasible solution that has value within 0.01% of optimum.