Closest Pair of Points

Cormen et.al 33.4
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric problem.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Simple solution?
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric problem.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Brute force solution. Compare all pairs of points: $O(n^2)$.

1-D version?
1D, 2D versions

1D: Sort the points: \(O(n \log n) \)
Walk through the sorted list and find the min dist pair

2D: Does it extend to 2D?

- sort p-s by x: find min pair
 - The shortest distance pair in X direction is not necessary the shortest distance pair.

- or

- sort p-s by y: find min pair
 - The shortest distance pair in Y direction is not necessarily the shortest distance pair.

what can we do with those?

Nothing really.
Divide and Conquer Strategy

Divide points into left half Q and right half R \(O(n)\)

Find closest pairs in Q and R

Combine the solutions (min of \(\text{min}_Q\) and \(\text{min}_P\))

What's the problem? What did we miss?

A point in Q may be closer to a point in R than the min pair in Q and the min pair in R, so we missed the true minimum distance pair.

We need to take point pairs between Q and R into account. We need to do this in \(O(n)\) time to keep complexity at \(O(n \log n)\).
Algorithm.

- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.

 To do this efficiently we sort the points once by x coordinate ($O(n \log n)$). We also sort the points by y (needed later). Then we split ($O(1)$) the problem P in two, Q (left half) and R (right half).
Closest Pair of Points

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- Recur: find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Recur:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. Return best of 3 solutions.

Seems like $\Theta(n^2)$ because $O(n)$ points may have to be compared in Combine step. Or can we narrow the Q,R point pairs we look at?
Combining the solutions

Given \(Q \)s min pair \((q_1, q_2)\) and \(R \)s min pair \((r_1, r_2)\),
\[
\delta = \min(\text{dist}(q_1, q_2), \text{dist}(r_1, r_2)).
\]
What can we do with \(\delta \) to narrow the number of points in \(Q \) and \(R \) that we need to compare?

Find closest pair with one point in each side, assuming distance < \(\delta \).
Combining the solutions

Find closest pair with one point in each side, assuming distance $< \delta$.
- Observation: only need to consider points within δ of line L.

\[
\delta = \min(12, 21)
\]
Combining the solutions

Find closest pair with one point in each side, assuming distance < δ.

- Observation: only need to consider points within δ of line L.
- But we can’t afford to look at all pairs of points!
Combining the solutions

Find closest pair with one point in each side, assuming distance < δ.
- Observation: only need to consider points within δ of line L.
- Select sorted by y coordinate points in 2δ-strip.
- But how many points \rightarrow pairs can there be in the strip?
 First thought: points: $O(n)$ \rightarrow pairs $O(n^2)$
Here's the kicker:

Find closest pair with one point in each side, assuming distance < \(\delta \).
- Observation: only need to consider points within \(\delta \) of line \(L \).
- Select sorted by y coordinate points in \(2\delta \)-strip.
- For each point in the strip only check distances of those within 7 positions in sorted list!

\[\delta = \min(12, 21) \]
Consider 2 rows of four $\delta/2 \times \delta/2$ boxes inside strip, starting at y coordinate of the point.

At most one point can live in each box! WHY?

Because max distance between two points in a box = \(\frac{\sqrt{2}}{2} \delta < \delta \)
Why is checking 7 next points sufficient?

Consider 2 rows of four $\delta/2 \times \delta/2$ boxes inside strip.

At most one point can live in each box!

If a point is more than 7 indices away, its distance must be greater than δ. So combining solutions can be done in linear time, because each point checks 7 (not $O(n)$) “following” Points. “Following?”

“Following” in ordered Y direction.
Do we always need to check 7 points?

NO!!

- As soon as a Y coordinate of next point is δ away, we can stop.
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 compute line L such that half the points are on one side and half on the other side.

 \(\delta_1 = \text{Closest-Pair(left half)} \)
 \(\delta_2 = \text{Closest-Pair(right half)} \)
 \(\delta = \min(\delta_1, \delta_2) \)

 scan points in \(\delta \) strip in y-order and compare distance between each point next neighbors until distance > \(\delta \). (At most 7 of these)
 If any of these distances is less than \(\delta \), update \(\delta \).

 return \(\delta \).
}

Running time: \(O(n \log n) \)