Topics (CLRS Ch 22, pp 589-623)

- Representation
- Breadth First Search/Depth First Search
- Connected components
- Cycles
- Bipartite graphs (testing)
- (Strongly) connected components
- Topological Sort
Undirected Graphs $G = (V, E)$

- $V = \text{set of nodes}$.
- $E = \text{set of edges between pairs of nodes.}$
- Captures pairwise relationship between objects.
- Graph size parameters: $n = |V|$, $m = |E|$.

$V = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}$
$E = \{ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5, 3-7, 3-8, 4-5, 5-6 \}$
$n = 8$
$m = 11$

What is the maximum possible value for $|E|$?
Directed Graphs

- Directed graph. $G = (V, E)$
 - Edge (u, v) goes from node u to node v.
 - Maximum number?

- Example. Web graph - hyperlink points from one web page to another.
 - Modern web search engines exploit hyperlink structure to rank web pages by importance.
Graph definitions

- Graph $G = (V, E)$, V: set of nodes or vertices,
- E: set of edges (pairs of nodes).
- In an undirected graph, edges are unordered pairs (sets) of nodes. In a directed graph edges are ordered pairs (tuples) of nodes.
- Path: sequence of nodes $(v_0..v_n)$ s.t. $\forall i: (v_i, v_{i+1})$ is an edge.
 Path length: number of edges in the path, or sum of weights.
 Simple path: all nodes distinct.
- Cycle: path with first and last node equal. Acyclic graph: graph without cycles. DAG: directed acyclic graph.
- Two nodes are adjacent if there is an edge between them. In a complete graph all nodes in the graph are adjacent.
more definitions

- An undirected graph is *connected* if for all nodes v_i and v_j there is a path from v_i to v_j. An undirected graph can be partitioned in *connected components*: maximal connected sub-graphs.

- A directed graph can be partitioned in *strongly connected components*: maximal sub-graphs C where for every u and v in C there is a path from u to v and there is a path from v to u.

- $G'(V', E')$ is a *sub-graph* of $G(V,E)$ if $V' \subseteq V$ and $E' \subseteq E$.

- The sub-graph of G *induced* by V' has all the edges $(u,v) \in E$ such that $u \in V'$ and $v \in V'$.

- In a *weighted graph* the edges have a weight (cost, length,..) associated with them.
Graph representation: adjacency matrix

- Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge, or weight w_{uv} in a weighted graph.
- For undirected graphs, each edge is represented twice.
- Space proportional to n^2.
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all outgoing edges from a node takes $\theta(n)$.

![Adjacency matrix example](image)
Graph representation: adjacency list

- Adjacency list. Node indexed array of lists.
- For undirected graphs, each edge is again represented twice.
- Space proportional to $m + n$.
- Checking if (u, v) is an edge takes $O(\text{degree}(u))$ time.
- Identifying all outgoing edges from a node takes $O(\text{degree}(u))$ time.
- Identifying all edges takes $\Theta(m + n)$ time.
- Cool python representation: dictionary
Which Implementation

- Which implementation best supports common graph operations:
 - Is there an edge between vertex i and vertex j?
 - Find all vertices adjacent to vertex j

- Which best uses space?
Trees

- Def. An undirected graph is a tree if it is connected and does not contain a cycle.

How many edges does a tree have?

- Given a set of nodes, build a tree stepwise
 - every time you add an edge, you must add a new node to the growing tree. WHY?
 - how many edges to connect n nodes?
Rooted Trees

- Rooted tree. Given a tree T, choose a root node r and orient each edge below r; do same for sub-trees.
- Models hierarchical structure. By rooting the tree it is easy to see that it has $n-1$ edges.

![Example tree and rooted tree](image)
Traversing a Binary Tree

- **Pre order**
 - visit the node
 - go left
 - go right
- **In order**
 - go left
 - visit the node
 - go right
- **Post order**
 - go left
 - go right
 - visit the node
- **Level order / breadth first**
 - for $d = 0$ to height
 - visit nodes at level d
Traversal Examples

Pre order
A B D G H C E F I

In order
G D H B A E C F I

Post order
G H D B E I F C A

Level order
A B C D E F G H I

IMPLEMENTATION of these traversals??
Tree traversal Implementation

- recursive implementation of preorder
 - The steps:
 - visit node
 - preorder(left child)
 - preorder(right child)
 - What changes need to be made for in-order, post-order?
- How would you implement level order?
Tree traversal implementation

- Recursive implementation of preorder. The basic steps:
 - visit node
 - preorder (left child)
 - preorder (right child)

- What changes need to be made for in-order, post-order?

- How would you implement level order?
Recursive implementation of preorder. The basic steps:

- visit node
- preorder (left child)
- preorder (right child)

What changes need to be made for in-order, post-order?

How would you implement level order?
Connectivity

- **s-t connectivity problem.** Given two nodes s and t, is there a path between s and t?

- **s-t shortest path problem.** Given two nodes s and t, what is the length of the shortest path between s and t? Length: either in terms of number of edges, or sum of weights of the edges in the path
Graph traversal

What makes it different from tree traversal

- You can visit the same node more than once
- You can get in a cycle
- What to do about it:
 - **Mark** the nodes
 - White: unvisited
 - Grey: (still being considered) on the frontier: not all adjacent nodes have been visited yet
 - Black: off the frontier: all adjacent nodes visited (not considered anymore)
Breadth First Search (BFS)

- Like *level traversal* in trees BFS(G, s) explores the edges of G, and locates every node reachable from s in a *level order*, using a queue.

- BFS also computes the *distance*: number of edges from s to all these nodes, and the *shortest path* (minimal #edges) from s to v.

- BFS expands a *frontier* of discovered but not yet visited nodes. Nodes are colored white, grey or black. They start out undiscovered or white.
BFS intuition

- BFS intuition. Explore outward from s, adding nodes one "layer" at a time.

- BFS algorithm.
 - $L_0 = \{s\}$.
 - $L_1 = \text{all neighbors of } L_0$.
 - $L_2 = \text{all nodes not in } L_0 \text{ or } L_1, \text{ and that have an edge to a node in } L_1$.
 - $L_{i+1} = \text{all nodes that do not belong to an earlier layer, and that have an edge to a node in } L_i$.

- For each i, L_i consists of all nodes at distance exactly i from s. There is a path between s and t iff t appears in some layer.
Breadth First tree

- BFS produces a *Breadth First Tree* rooted at s: when a node v in L_{i+1} is discovered as a neighbor of node u in L_i we add edge (u,v) to the BF tree.

- Property. Let T be a BFS tree of G, and let (x,y) be an edge of G. Then the level of x and y differ by at most 1. **WHY?**

- Either in the same layer (2,3) for root 1, or in two adjacent layers (2,4) for root 1.
Breadth First Search

(a) 1
 2 3
(b) 1
 2 3
 4 5 7 8
(c) 1
 2 3
 4 5 7 8
 6

L_0
L_1
L_2
L_3
Breadth First Search (BFS)

BFS(G,s)

d: distance, c: color, p: parent in BFS tree
forall v in V-s {c[v]=white; d[v]=, p[v]=nil}
c[s]=grey; d[s]=0; p[s]=nil;
Q=empty;
enque(Q,s);
while (Q != empty)
 u = deque(Q);
 forall v in adj(u)
 if (c[v]==white)
 c[v]=grey; d[v]=d[u]+1; p[v]=u;
enque(Q,v)
c[u]=black;
don't really need grey here, why?

We don't use grey; we just test for unvisited (white) so we can paint v black (visited) immediately.
BFS complexity

- Each node is painted white once, and is enqueued and dequeued at most once.
- Why? Once a node is not white, we don't enqueue/dequeue it anymore.
- Enque and deque take constant time. The adjacency list of each node is scanned only once, when it is dequeued.

Therefore time complexity for BFS is

\[O(|V| + |E|) \] or \[O(n + m) \]
Connected components

- A graph is \textit{connected} if there is a path between any two nodes.
- The \textit{connected component} of a node \(s \) is the set of all nodes reachable from \(s \).

\begin{itemize}
 \item Connected component containing the node 1 is \(\{1, 2, 3, 4, 5, 6, 7, 8\} \)
\end{itemize}

One graph with three connected components.
Connected components

- Given two nodes s and t, their connected components are either identical or disjoint.

Proof: two cases: either there is a path between s and t or there isn’t.

- If there is a path: take a node u in the connected component of s, and construct a path from t to u as follows: from t to s, and then from s to u, so $CC_s = CC_t$.

- If there is no path: assume that the intersection contains a node u. Use it to construct a path between s and t as follows: from s to u, then u to t: this is a *contradiction*.
Connected components

- Generic algorithm for finding connected components

\[R = \{s\} \] # connected component of s is initially s.
while there is an edge (u,v) where u is in R and v is not in R:
 \[\text{add v to R} \]

- Upon termination, R is the connected component containing s. Many variants, based on
 - BFS: explore in order of distance from s.
 - DFS: explores edges \textit{from the most recently discovered node}; backtracks when reaching a dead-end.