Closest Pair of Points

Cormen et.al 33.4
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric problem.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Simple solution?
Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric problem.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.

Brute force solution. Compare all pairs of points: $O(n^2)$.

1-D version?
1D, 2D versions

1D: Sort the points: \(O(n \log n)\)
Walk through the sorted list and find the min dist pair

2D: Does it extend to 2D?

sort p-s by x: find min pair

or

sort p-s by y: find min pair

what can we do with those?

The shortest distance pair in X direction is not necessary the shortest distance pair.

The shortest distance pair in Y direction is not necessarily the shortest distance pair.

Nothing really.
Divide points into left half Q and right half R ($O(n)$)

Find closest pairs in Q and R

Combine the solutions (min of \min_Q and \min_P)

What's the problem? What did we miss?

A point in Q may be closer to a point in R than the min pair in Q and the min pair in R, so we missed the true minimum distance pair.

We need to take point pairs between Q and R into account.
We need to do this in $O(n)$ time to keep complexity at $O(n \log n)$.
Closest Pair of Points

Algorithm.

- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.

 To do this efficiently we sort the points once by x coordinate ($O(n \log n)$). We also sort the points by y (needed later). Then we split ($O(1)$) the problem P in two, Q (left half) and R (right half).
Closest Pair of Points

Algorithm.
- **Divide**: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Recur**: find closest pair in each side recursively.
Closest Pair of Points

Algorithm.
- **Divide:** draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
- **Recur:** find closest pair in each side recursively.
- **Combine:** find closest pair with one point in each side. Return best of 3 solutions.

Seems like $\Theta(n^2)$ because $O(n)$ points may have to be compared in Combine step. Or can we narrow the Q,R point pairs we look at?
Combining the solutions

Given Qs min pair (q_1, q_2) and Rs min pair (r_1, r_2),
\[\delta = \min(\text{dist}(q_1, q_2), \text{dist}(r_1, r_2)). \]

What can we do with δ to narrow the number of points in Q and R that we need to compare?

Find closest pair with one point in each side, **assuming distance < δ.**

\[\delta = \min(12, 21) \]
Combining the solutions

Find closest pair with one point in each side, assuming distance < δ.
- Observation: only need to consider points within δ of line L.

\[\delta = \min(12, 21) \]
Combining the solutions

Find closest pair with one point in each side, assuming distance < δ.

- Observation: only need to consider points within δ of line L.
- But we can’t afford to look at all pairs of points!

$\delta = \min(12, 21)$
Combining the solutions

Find closest pair with one point in each side, assuming distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Select sorted by y coordinate points in 2δ-strip.
- But how many points \rightarrow pairs can there be in the strip?

 First thought: points: $O(n)$ \rightarrow pairs $O(n^2)$

\[\delta = \min(12, 21) \]
Here's the kicker:

Find closest pair with one point in each side, assuming distance \(< \delta\).

- Observation: only need to consider points within \(\delta\) of line \(L\).
- Select sorted by y coordinate points in \(2\delta\)-strip.
- For each point in the strip only check distances of those within 7 positions in sorted list!

\[\delta = \min(12, 21) \]
Consider 2 rows of four $\delta/2 \times \delta/2$ boxes inside strip, starting at y coordinate of the point.

At most one point can live in each box! WHY?

Because max distance between two points in a box = $\frac{\sqrt{2}}{2} \delta < \delta$

Why is checking 7 next points sufficient?
Why is checking 7 next points sufficient?

Consider 2 rows of four $\delta/2 \times \delta/2$ boxes inside strip.

At most one point can live in each box!

If a point is more than 7 indices away, its distance must be greater than δ. So combining solutions can be done in linear time, because each point checks 7 (not $O(n)$) “following” Points. “Following?”

“Following” in ordered Y direction.
Do we always need to check 7 points?

NO!!

- As soon as a Y coordinate of next point is \(\delta \) away, we can stop.
Closest Pair Algorithm

Closest-Pair(p₁, ..., pₙ) {
 compute line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 scan points in δ strip in y-order and compare distance between each point next neighbors until distance > δ. (At most 7 of these)
 If any of these distances is less than δ, update δ.

 return δ.
}

Running time: $O(n \log n)$