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CS320 Algorithms: Theory and Practice
Spring 2019

slides by Wim Bohm

Course Introduction
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"For me, great algorithms are the poetry of computation. 
Just like verse, they can be terse, allusive, dense, and even 
mysterious. But once unlocked, they cast a brilliant new 
light on some aspect of computing."  - Francis Sullivan

Course Objectives
Algorithms:
■ Design – strategies for algorithmic problem solving

– advanced data structures and their use in algorithms
■ Reasoning about algorithm correctness
■ Analysis of time and space complexity
■ Implementation – create an implementation that respects the 

runtime analysis
Algorithmic Approaches / Classes :
■ Greedy 
■ Divide and Conquer
■ Dynamic programming
Problem Classes:
■ P: Polynomial, NP: Non deterministic Polynomial 
Parallel Algorithms:
■ Dynamic Multi-threading
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Grading

Prerequisites Exam (wk 2)   10%
Programming Assignments   15%
Written Assignments          15%    
Quizzes                               10%
Exams                                  50%

See  CS320 web site, let’s go there now

Implementation
Programs will be written in Python:
v Powerful data structures

v tuples, dictionaries, (array)lists
v Simple, easy to learn syntax
v Highly readable, compact code
v Supports object oriented and

functional programming
v An extensive standard library
v Strong support for integration with 

other languages (C,  C++, Java) and libraries 
(numpy, jupyter, CUDA)

We assume you know Python (from CS220)!
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Python vs. e.g. Java
What makes Python different from Java?

v Java is statically typed, i.e. variables are bound to           
types at compile time. This avoids run time errors, but    
makes java programs more rigid.

v Python is dynamically typed, i.e. a variable takes on some            
type at run time, and its type can change. A variable can be 
of one type somewhere in the code and of another type 
somewhere else

# line is a String here
line = line.strip().split(" ")
# line is an (Array)List of Strings here

v This makes python programs more flexible, but can                
cause strange run time errors, e.g. when a caller expects a 
return value but the called function does not return one.

5

Does anyone else use Python?

One of the three “official languages” in Google.
(Guido van Rossum, creator of Python, was a Googler

(and also a researcher at the Mathematical Center   
in Amsterdam)

)

Peter Norvig, Director of Research at Google: 
"Python has been an important part of Google since the 

beginning, and remains so as the system grows and evolved. Today 
dozens of Google engineers use Python, and we're looking for more 
people with skills in this language"

Yahoo groups, Yahoo maps -- 100% python
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Our approach to problem solving
q Formulate it with precision (usually using mathematical 

concepts, such as sets, relations, and graphs)
q Design an algorithm and its main data structures
q Prove its correctness
q Analyze its complexity (time, space)

q Improve the initial algorithm (in terms of 
complexity), preserving correctness 

q Implement it, preserving the analyzed complexity!
In the lab PAs we will test for that. So in this course     
we check for correctness and complexity of your PAs.

7

Our first problem: matching
Two parties e.g., companies and applicants
■ Each applicant has a preference list of companies
■ Each company has a preference list of applicants
■ A possible scenario: 

cA offers job to aA
aA accepts, but now gets offer from cX
aA likes cX more, retracts offer from cA
now cA offers job to aB, who retracts his acceptance of an 
offer from cB

■ We would like a systematic method for assigning 
applicants to companies– stable matching

■ A system like this is in use for matching medical 
residents with hospitals

8
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Stable Matching

Goal.  Given a set of preferences among companies and 
applicants, design a stable matching process (matching is 
both a noun and a verb).

Unstable pair:  applicant x and company y are an unstable 
pair (not in the current matching) if:
■ x prefers y to its assigned company and
■ y prefers x to one of its selected applicants.

Stable assignment.  Assignment without unstable pairs.
■ Natural and desirable condition.

9

Is some control possible?

Given the preference lists of applicants A and 
companies C, can we assign As to Cs such that

for each C
for each A not scheduled to work for C
either C prefers all its applicants to A

or A prefers current company to C

If this holds, then what? 
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Stable state

Given the preference lists of applicants A and 
of companies C, can we assign As to Cs such 
that

for each C
for each A not scheduled to work for C

C prefers all its applicants to A
or A prefers current company to C

If this holds, there is no unstable pair, and 
therefore individual self interest will prevent 
changes in applicant / company matches: 

Stable state            

Simplifying the problem

Matching applicants/companies problem a bit 
messy:
■ Company may look for multiple applicants, 

applicants looking for a single internship

■ Maybe there are more jobs than applicants, 
or fewer jobs than applicants

■ Maybe some applicants/jobs are equally
liked by companies/applicants (partial 
orders)

Formulate a "bare-bones" version of the 
problem

12
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Stable Matching Problem
A matching: a subset of ordered pairs, from M x W where every 
man and woman appears at most once.

A perfect [Sanjay prefers the term “complete”]  matching: a 
matching where every man and woman appears exactly once. 

Stability:  no incentive for some pair to undermine the assignment.

■ A pair (m,w) NOT IN THE CURRENT MATCHING is an 
instability if man m and woman w prefer each other to current 
partners in the matching.

■ Both m and w can improve their situation

Stable matching:  perfect matching with no unstable pairs. Stable 
matching problem: Given the preference lists of n men and n women, 
find a stable matching if one exists.

13

The Stable Matching Problem
Problem:  Given n men and n women where
■ Each man lists women in total order of preference
■ Each woman lists men in total order of preference

– What is a total order? Do you know an example?
Do you know a counter example?

find a stable matching of all men and women
14

Zeus Amy ClareBertha

Yancey Bertha ClareAmy

Xavier Amy ClareBertha

1st 2nd 3rd

Men’s Preference Profile

favorite least favorite

Clare Xavier ZeusYancey

Bertha Xavier ZeusYancey

Amy Yancey ZeusXavier

1st 2nd 3rd

Women’s Preference Profile

favorite least favorite
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Formulation

Men: M={m1,...,mn}   Women: W={w1,...,wn}
The Cartesian Product MxW is the set of all 
possible ordered pairs.

A matching S is a set of pairs (subset of 
MxW) such that each m and w occurs in at 
most one pair 

A perfect matching S is a set of pairs (subset 
of MxW) such that each individual  occurs in 
exactly one pair
How many perfect matchings are there?

Instability

Given a perfect match, eg

S = { (m1,w1),  (m2,w2) }

But m1 prefers w2 and w2 prefers m1
(m1,w2) is an instability for S

(notice  that (m1,w2)  is not in S )

S is a stable matching if:
■ S is perfect
■ and there is no instability w.r.t. S

16
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Example 1

m1:  w1, w2 m2: w1, w2
w1:  m1, m2 w2: m1, m2

What are the perfect matchings?

Example 1

m1:  w1, w2 m2: w1, w2
w1:  m1, m2 w2: m1, m2

1. { (m1,w1), (m2,w2) } 
2. { (m1,w2), (m2,w1) } 

which is stable/unstable?
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Example 1

m1:  w1, w2 m2: w1, w2
w1:  m1, m2 w2: m1, m2

1. { (m1,w1), (m2,w2) }  stable, WHY?
2. { (m1,w2), (m2,w1) }  unstable,  WHY?

Example 2

m1:  w1, w2 m2: w2, w1
w1:  m2, m1 w2: m1, m2

1.  { (m1,w1), (m2,w2) }
2.  { (m1,w2), (m2,w1) }

which is / are unstable/stable?

Conclusion?

20
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Example 3

m1:  w1, w2, w3 m2: w2, w3, w1 m3: w3, w1, w2
w1:  m2, m1, m3 w2: m1, m2, m3 w3: m1, m2, m3

Is { (m1,w1), (m2,w2), (m3,w3) }   stable?

Is { (m1,w2), (m2,w1), (m3,w3) }   stable?

21

Questions…
■ Given a preference list, does a stable 

matching exist?
■ Can we efficiently construct a stable 

matching if there is one?
■ a naive algorithm:

for S in the set of all perfect matchings :
if S is stable :  return S

return None
Is this algorithm correct?
What is its running time?

22
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Towards an algorithm

initially: no match

An unmatched man m proposes to the woman w highest 
on his list. 
Will this be part of a stable matching? 

Towards an algorithm

initially: no match

An unmatched man m proposes to the woman w highest 
on his list. 
Will this be part of a stable matching? 

Not necessarily: w may like some m’ better, AND?

So w and m will be in a temporary state of engagement. 

w is prepared to change her mind when a man higher on 
her list proposes.
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While not everyone is matched…
An unmatched man m proposes to the woman w
highest on his list that he hasn't proposed to yet.

If w is free, they become engaged

If w is engaged to m’:
If w prefers m’ over m, m stays free
If w prefers m over m’, (m,w) become engaged

The Gale-Shapley algorithm1

A few non-obvious questions:
How long does it take?
Does the algorithm return a stable matching?
Does it even return a perfect matching?

26

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) 

Choose such a man m
w = highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)

(m,w) become engaged
else if (w prefers m to her fiancé m')

(m,w) become engaged, m’ becomes free
else

m remains free

1D. Gale and L. S. Shapley: "College Admissions and the Stability of Marriage", American Mathematical 
Monthly 69, 9-14, 1962.
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Observations

Each woman w remains engaged from the first proposal
and the sequence of w-s partners gets better

Each man proposes to less and less preferred women and will not 
propose to the same woman twice

27

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) 

Choose such a man m
w = highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)

(m,w) become engaged
else if (w prefers m to her fiancé m')

(m,w) become engaged, m’ becomes free
else

m remains free

Observations

Claim.  The algorithm terminates after at most n2 iterations of 
the while loop.

28

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) 

Choose such a man m
w = highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)

(m,w) become engaged
else if (w prefers m to her fiancé m')

(m,w) become engaged, m’ becomes free
else

m remains free
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Observations

Claim.  The algorithm terminates after at most n2 iterations of 
the while loop.
At each iteration a man proposes (only once) to a woman he has 
never proposed to, and there are only n2 possible pairs (m,w) 
WHY ONLY n2?     

29

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) 

Choose such a man m
w = highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)

(m,w) become engaged
else if (w prefers m to her fiancé m')

(m,w) become engaged, m’ becomes free
else

m remains free

only n choices for each of the n men

Observations

When the loop terminates, the matching is perfect
Proof: By contradiction.  Assume there is a free man, m. 

Because the loop terminates, m proposed to all women
But then all women are engaged, hence there is no free man
àContradiction

30

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) 

Choose such a man m
w = highest-ranked woman on m's list to whom m has not yet proposed
if (w is free)

(m,w) become engaged
else if (w prefers m to her fiancé m')

(m,w) become engaged, m’ becomes free
else

m remains free
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Proof of Correctness:  Stability

Claim.  No unstable pairs.   Proof. (by contradiction)
■ Suppose (m, w) is an unstable pair:  each prefers each 

other to partner in Gale-Shapley matching S*.

■ Case 1:  m never proposed to w.
Þ m prefers his GS partner w’ to w
Þ (m, w) is not unstable.

■ Case 2:  m proposed to w.
Þ w rejected m (right away or later)
Þ w prefers her GS partner m’ to m.
Þ (m, w) is not unstable.

■ In either case (m, w) is not unstable, a contradiction.  ▪

31

m’, w

m, w’

S*

. . .

men propose in decreasing
order of preference

women only trade up

Summary

Stable matching problem.  Given n men and n women 
and their preferences, find a stable matching if one 
exists.
Gale-Shapley algorithm.  Guaranteed to find a stable 
matching for any problem instance.

Q. If there are multiple stable matchings, which one 
does GS find?

32
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Which solution?

m1:  w1, w2 m2: w2, w1
w1:  m2, m1 w2: m1, m2

Two stable solutions
1:  { (m1,w1), (m2,w2) }
2:  { (m1,w2), (m2,w1) }

GS will always find one of them (which?)

When will the other be found?

33

Symmetry

The stable matching problem is symmetric w.r.t. to 
men and women, but the GS algorithm is asymmetric.

There is a certain unfairness in the algorithm:
If all men list different women as their first choice, 
they will end up with their first choice, regardless of 
the women's preferences (see example 3). 

34
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Non-determinism

Notice the following line in the GS algorithm:
while (some man is free and 

hasn't proposed to every woman
) 

Choose such a man m

The algorithm does not specify WHICH

Still, it can be shown that all executions of the 
algorithm find the same stable matching.

This ends our discussion of stable matching.

35

Representative Problems
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Remember the problem solving paradigm
1. Formulate it with precision (usually using 

mathematical concepts, such as sets, relations, and 
graphs, costs, benefits, optimization criteria)

2. Design an algorithm

3. Prove its correctness, e.g. in terms of pre and post
conditions 

4. Analyze its complexity

5. Implement respecting the derived complexity 

Often, steps 2-5 are repeated, to improve efficiency

37

Interval Scheduling

You have a resource (hotel room, printer, lecture 
room, telescope, manufacturing facility, professor...)

There are requests to use the resource in the form 
of start time si and finish time fi, such that si<fi

Objective:  grant as many requests as possible.
Two requests i and j are compatible if they don't 
overlap, i.e. 

fi ≤ sj or fj ≤ si
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Interval Scheduling
Input.  Set of jobs with start times and finish times.
Goal.  Find maximum cardinality subset of compatible 
jobs.

What happens if you pick the first starting (a)?, 
the smallest (c)? What is the optimum?

39

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

h

e

b

Algorithmic Approach

The interval scheduling problem is amenable 
to a very simple solution.

Now that you know this, can you think of it?   

Hint:  Think how to pick a first interval while 
preserving the longest possible free time...
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Weighted Interval Scheduling

Input.  Set of jobs with start times, finish times, and 
profits.
Goal.  Find maximum profit subset of compatible jobs.

41

Time
0 1 2 3 4 5 6 7 8 9 10 11

20

11

16

13

23

12

20

26

Bipartite Matching

Stable matching was defined as matching elements of 
two disjoint sets.

We can express this in terms of graphs. 

A graph is bipartite if its nodes can be partitioned in 
two sets X and Y, such that the edges are between an
x in X and a y in Y
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Bipartite Matching

Input.  Bipartite graph.
Goal.  Find maximum cardinality matching.

43

C

1

2

A

E

3

B

D 4

Matching in bipartite graphs 
can model assignment problems, 
e.g., assigning jobs to machines, 
where an edge between a job j 
and a machine m indicates that 
m can do job j, or professors 
and courses.

How is this different from the stable 
matching problem?

Independent Set

Input.  Graph.
Goal.  Find maximum cardinality independent set:

44

6

2

5

1

7

3
4

6

5

1

4

subset of nodes such that no 

two are joined by an edge

Can you formulate interval scheduling as an independent set 
problem? If so, how could you solve the interval scheduling 
problem? 
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Independent set problem

v There is no known efficient way to solve the 
independent set problem.

v But we just said: we can formulate interval 
scheduling as independent set problem.....  ???

v What does "no efficient way" mean?

v The only solution we have so far is trying all sub 
sets and finding the largest independent one.

v How many sub sets of a set of n nodes are there?

Representative Problems / Complexities
Looking ahead…

q Interval scheduling:  n log(n) greedy algorithm.

q Weighted interval scheduling:  n log(n) dynamic 
programming algorithm.

q Independent set:  NP (no known polynomial 
algorithm exists).

46
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Algorithm

Algorithm: effective procedure
■ mapping input to output

effective: unambiguous, executable

■ Turing defined it as: "like a Turing machine"

■ program = effective procedure

Is there an algorithm for every possible problem?

Algorithm
Algorithm: effective procedure
■ mapping input to output

effective: unambiguous, executable
■ Turing defined it as: "like a Turing machine"
■ program = effective procedure

Is there an algorithm for every possible problem?

No, the problem must be effectively specified: "how
many angels can dance on the head of a pin?"  not 
effective. Even if it is effectively specified, there is 
not always an algorithm to provide an answer. This
occurs often for programs analyzing programs  (examples?)  
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Ulam's problem

def f(n) :   
if (n==1) return 1
elif (odd(n)) return f(3*n+1)
else return f(n/2)

Ulam's problem

def f(n) :   
if (n==1) return 1
elif (odd(n)) return f(3*n+1)
else return f(n/2)

Does f(n) always stop?

Steps in running f(n) for a few values of n:
1
2, 1
3, 10, 5, 16, 8, 4, 2, 1
4, 2, 1
5, 16, 8, 4, 2, 1
6, 3, 10, 5, 16, 8, 4, 2, 1
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
8, 4, 2, 1
9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1
10, 5, 16, 8, 4, 2, 1
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Ulam's problem

def f(n) :   
if (n==1) return 1
elif (odd(n)) return f(3*n+1)
else return f(n/2)

Nobody has found an n for which f does not stop
Nobody has found a proof (so there can be no 
algorithm deciding this) that f stops for all n 
A generalization of this problem has been proven to 
be undecidable. It is called the Halting Problem.
A problem P is undecidable, if there is no algorithm 
that produces P(x) for every possible input x

The Halting Problem is undecidable

Given a program P and input x
will P stop on x?

We can prove (cs420):
the halting problem is undecidable

i.e. there is no algorithm Halt(P,x) that for 
any program P and input x decides whether P 
stops on x.

But for some “nice” programs, we can prove 
they halt.
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Verification/equivalence undecidable 
Given any specification S and any program P 
there is no algorithm that decides whether P 
executes according to S

Given any two programs P1 and P2, there is no 
algorithm that decides       x: P1(x)=P2(x)

Does this mean we should not build program 
verifiers?

€ 

∀

Intractability

Suppose we have a program, 
■ does it execute a in a reasonable time?  
■ E.g., towers of Hanoi (cs200). 

Three pegs, one with n smaller and 
smaller disks, move (1 disk at the time) 
to another peg without ever placing a 

larger disk on a smaller
f(n) = # moves for tower of size n

Monk: before a tower of Hanoi of size 
100 is moved, the world will have 
vanished    
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hanoi

# pegs are numbers, via is computed  
# empty base case
def hanoi(n, from, to):

if (n>0) :
via = 6 - from – to
hanoi(n-1,from, via)
print "move disk", n,  " from", from, " to ",  to
hanoi(n-1,via,to);

f(n): #moves in hanoi

f(n) = 2f(n-1) + 1, f(1)=1
f(1) = 1,  f(2) = 3,  f(3) = 7, f(4) = 15

f(n) = 2n-1
How can you show that?

Can you write an iterative Hanoi algorithm?

Was the monk right? 
2100 moves, say 1 per second.....
How many years?
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Is there a better algorithm? 

THE ONE MILLION DOLLAR QUESTION IN THIS CLASS

Is there a better algorithm? 

Pile(n-1) must be 
off peg1 

and 
completely on one other peg 

before disk n can be moved to its destination

so (inductively) all moves are necessary
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Algorithm complexity

Measures in units of time and space

Linear Search X in dictionary D
i=1
while not at end and X!= D[i]:

i=i+1

We don't know if X is in D, and we don't know 
where it is, so we can only give worst or average
time bounds
We don't know the time for atomic actions, so 
we only determine Orders of Magnitude 

Linear Search: time and space complexity

Space: n locations in D plus some local variables

Time: 
In the worst case we search all of D, so the loop 
body is executed n times

In average case analysis we compute the expected
number of steps: i.e., we sum the products of the 
probability of each option and the time cost of that 
option. In the average case the loop body is
executed about n/2 times 

€ 

1/n * i =1/n i = (n(n +1)
i=1

n

∑ /2) /n ≈ n /2
i=1

n

∑


