## CS320_Algorithms: Theory and Practice Spring 2019 <br> slides by Wim Bohm

## Course Introduction

"For me, great algorithms are the poetry of computation. Just like verse, they can be terse, allusive, dense, and even mysterious. But once unlocked, they cast a brilliant new ight on some aspect of computing." - Francis Sullivan

## Course Objectives

Algorithms:

- Design - strategies for algorithmic problem solving - advanced data structures and their use in algorithms
- Reasoning about algorithm correctness
- Analysis of time and space complexity
- Implementation - create an implementation that respects the runtime analysis
Algorithmic Approaches / Classes
- Greedy
- Divide and Conquer
- Dynamic programming

Problem Classes:
. P: Polynomial, NP: Non deterministic Polynomial
Parallel Algorithms:

- Dynamic Multi-threading



## Implementation

Programs will be written in Python:

* Powerful data structures
- tuples, dictionaries, (array)lists
* Simple, easy to learn syntax
* Highly readable, compact code
* Supports object oriented and functional programming
* An extensive standard library
* Strong support for integration with other languages (C, C++, Java) and libraries (numpy, jupyter, CUDA)

We assume you know Python (from CS220)!

## Python vs. e.g. Java

What makes Python different from Java?

- Java is statically typed, i.e. variables are bound to types at compile time. This avoids run time errors, but makes java programs more rigid.
- Python is dynamically typed, i.e. a variable takes on some type at run time, and its type can change. A variable can be of one type somewhere in the code and of another type somewhere else
\# line is a String here
line = line.strip().split(" ")
\# line is an (Array)List of Strings here
- This makes python programs more flexible, but can cause strange run time errors, e.g. when a caller expects a return value but the called function does not return one.


## Does anyone else use Python?

One of the three "official languages" in Google. (Guido van Rossum, creator of Python, was a Googler (and also a researcher at the Mathematical Center in Amsterdam)
)

Peter Norvig, Director of Research at Google:
"Python has been an important part of Google since the beginning, and remains so as the system grows and evolved. Today dozens of Google engineers use Python, and we're looking for more people with skills in this language"

Yahoo groups, Yahoo maps -- 100\% python

## Our approach to problem solving

- Formulate it with precision (usually using mathematical concepts, such as sets, relations, and graphs)
- Design an algorithm and its main data structures
- Prove its correctness
- Analyze its complexity (time, space)
- Improve the initial algorithm (in terms of complexity), preserving correctness
- Implement it, preserving the analyzed complexity! In the lab PAs we will test for that. So in this course we check for correctness and complexity of your PAs.


## Our first problem: matching

Two parties e.g., companies and applicants

- Each applicant has a preference list of companies
- Each company has a preference list of applicants
- A possible scenario:
cA offers job to aA
aA accepts, but now gets offer from $c X$
$a A$ likes $c X$ more, retracts offer from $c A$
now $c A$ offers job to $a B$, who retracts his acceptance of an offer from cB
- We would like a systematic method for assigning applicants to companies- stable matching
- A system like this is in use for matching medical residents with hospitals


## Stable Matching

Goal. Given a set of preferences among companies and applicants, design a stable matching process (matching is both a noun and a verb).

Unstable pair: applicant $x$ and company $y$ are an unstable pair (not in the current matching) if:

- x prefers $y$ to its assigned company and
- $y$ prefers $x$ to one of its selected applicants.

Stable assignment. Assignment without unstable pairs.

- Natural and desirable condition.


## Is some control possible?

Given the preference lists of applicants $A$ and companies $C$, can we assign $A s$ to $C s$ such that

## for each $C$

for each A not scheduled to work for $C$ either $C$ prefers all its applicants to $A$ or $A$ prefers current company to $C$

If this holds, then what?

## Stable state

Given the preference lists of applicants $A$ and of companies $C$, can we assign As to Cs such that
for each $C$
for each $A$ not scheduled to work for $C$
$C$ prefers all its applicants to $A$ or A prefers current company to $C$

If this holds, there is no unstable pair, and therefore individual self interest will prevent changes in applicant / company matches:

## Stable state

## Simplifying the problem

Matching applicants/companies problem a bit messy:

- Company may look for multiple applicants, applicants looking for a single internship
- Maybe there are more jobs than applicants, or fewer jobs than applicants
- Maybe some applicants/jobs are equally liked by companies/applicants (partial orders)

Formulate a "bare-bones" version of the problem

## Stable Matching Problem

A matching: a subset of ordered pairs, from $M \times W$ where every man and woman appears at most once.

A perfect [Sanjay prefers the term "complete"] matching: a matching where every man and woman appears exactly once.

Stability: no incentive for some pair to undermine the assignment.

- A pair ( $m, w$ ) NOT IN THE CURRENT MATCHING is an instability if man $m$ and woman $w$ prefer each other to current partners in the matching.
- Both $m$ and $w$ can improve their situation

Stable matching: perfect matching with no unstable pairs. Stable matching problem: Given the preference lists of $n$ men and $n$ women, find a stable matching if one exists.

## The Stable Matching Problem

Problem: Given $n$ men and $n$ women where

- Each man lists women in total order of preference
- Each woman lists men in total order of preference
- What is a total order? Do you know an example?

Do you know a counter example?

find a stable matching of all men and women

## Formulation

Men: $M=\left\{m_{1}, \ldots, m_{n}\right\}$ Women: $W=\left\{w_{1}, \ldots, w_{n}\right\}$ The Cartesian Product $M \times W$ is the set of all possible ordered pairs.

A matching $S$ is a set of pairs (subset of $M \times W$ ) such that each $m$ and $w$ occurs in at most one pair

A perfect matching $S$ is a set of pairs (subset of $M \times W$ ) such that each individual occurs in exactly one pair
How many perfect matchings are there?

Instability
Given a perfect match, eg

$$
S=\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)\right\}
$$

But $m_{1}$ prefers $w_{2}$ and $w_{2}$ prefers $m_{1}$ $\left(m_{1}, w_{2}\right)$ is an instability for $S$
(notice that $\left(m_{1}, w_{2}\right)$ is not in $S$ )
$S$ is a stable matching if:

- $S$ is perfect
- and there is no instability w.r.t. S


## Example 1

$m_{1}: w_{1}, w_{2} \quad m_{2}: w_{1}, w_{2}$
$w_{1}: m_{1}, m_{2} \quad w_{2}: m_{1}, m_{2}$
What are the perfect matchings?

## Example 1

$m_{1}: w_{1}, w_{2} \quad m_{2}: w_{1}, w_{2}$
$w_{1}: m_{1}, m_{2} \quad w_{2}: m_{1}, m_{2}$

1. $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)\right\}$
2. $\left\{\left(m_{1}, w_{2}\right),\left(m_{2}, w_{1}\right)\right\}$
which is stable/unstable?

## Example 1

$m_{1}: w_{1}, w_{2} \quad m_{2}: w_{1}, w_{2}$
$w_{1}: m_{1}, m_{2} \quad w_{2}: m_{1}, m_{2}$

1. $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)\right\}$ stable, WHY?
2. $\left\{\left(m_{1}, w_{2}\right),\left(m_{2}, w_{1}\right)\right\}$ unstable, WHY?

## Example 2

$m_{1}: w_{1}, w_{2} \quad m_{2}: w_{2}, w_{1}$
$w_{1}: m_{2}, m_{1} \quad w_{2}: m_{1}, m_{2}$

1. $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)\right\}$
2. $\left\{\left(m_{1}, w_{2}\right),\left(m_{2}, w_{1}\right)\right\}$
which is / are unstable/stable?
Conclusion?

## Example 3

$m_{1}: w_{1}, w_{2}, w_{3} \quad m_{2}: w_{2}, w_{3}, w_{1} \quad m_{3}: w_{3}, w_{1}, w_{2}$ $w_{1}: m_{2}, m_{1}, m_{3} \quad w_{2}: m_{1}, m_{2}, m_{3} \quad w_{3}: m_{1}, m_{2}, m_{3}$

Is $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right),\left(m_{3}, w_{3}\right)\right\}$ stable?

Is $\left\{\left(m_{1}, w_{2}\right),\left(m_{2}, w_{1}\right),\left(m_{3}, w_{3}\right)\right\}$ stable?

## Questions..

- Given a preference list, does a stable matching exist?
- Can we efficiently construct a stable matching if there is one?
- a naive algorithm:
for $S$ in the set of all perfect matchings :
if $S$ is stable: return $S$
return None
Is this algorithm correct?
What is its running time?


## Towards an algorithm

initially: no match
An unmatched man $m$ proposes to the woman $w$ highest on his list.
Will this be part of a stable matching?

## Towards an algorithm

initially: no match
An unmatched man $m$ proposes to the woman $w$ highest on his list
Will this be part of a stable matching?
Not necessarily: w may like some m'better, AND?
So $w$ and $m$ will be in a temporary state of engagement.
$w$ is prepared to change her mind when a man higher on her list proposes.

## While not everyone is matched...

An unmatched man $m$ proposes to the woman $w$ highest on his list that he hasn't proposed to yet.

If $w$ is free, they become engaged
If $w$ is engaged to $m^{\prime}$
If $w$ prefers $m^{\prime}$ over $m, m$ stays free If $w$ prefers $m$ over $m^{\prime},(m, w)$ become engaged

## The Gale-Shapley algorithm ${ }^{1}$

## Initialize each person to be free

while (some man is free and hasn't proposed to every woman)
Choose such a man m
$\mathrm{w}=$ highest-ranked woman on m's list to whom $m$ has not yet proposed if ( $w$ is free)
( $\mathrm{m}, \mathrm{w}$ ) become engaged
else if (w prefers $m$ to her fiancé m')
( $m, w$ ) become engaged, $m^{\prime}$ becomes free
else
m remains free

A few non-obvious questions:
How long does it take?
Does the algorithm return a stable matching?
Does it even return a perfect matching?
${ }^{1}$ D. Gale and L. S. Shapley: "College Admissions and the Stability of Marriage", American Mathematical Monthly 69, 9-14, 1962

## Observations

## Initialize each person to be free.

while (some man is free and hasn't proposed to every woman) Choose such a man m
w = highest-ranked woman on m's list to whom mas not yet proposed if (w is free)

$$
(m, w) \text { become engaged }
$$

else if (w prefers $m$ to her fiancé $m^{\prime}$ ) ( $m, w$ ) become engaged, $m^{\prime}$ becomes free
else
m remains free

Each woman w remains engaged from the first proposal and the sequence of $w$-s partners gets better
Each man proposes to less and less preferred women and will not propose to the same woman twice

## Observations

## Initialize each person to be free.

while (some man is free and hasn't proposed to every woman)
Choose such a man m
$\mathrm{w}=$ highest-ranked woman on m 's list to whom m has not yet proposed if (w is free)

```
            (m,w) become engaged
```

    else if (w prefers \(m\) to her fiancé \(m^{\prime}\) )
        ( \(\mathrm{m}, \mathrm{w}\) ) become engaged, \(\mathrm{m}^{\prime}\) becomes free
    else
        m remains free
    Claim. The algorithm terminates after at most $n^{2}$ iterations of the while loop.

## Observations

## Initialize each person to be free.

while (some man is free and hasn't proposed to every woman) Choose such a man m
w = highest-ranked woman on m's list to whom mas not yet proposed if (w is free)

$$
(m, w) \text { become engaged }
$$

else if (w prefers $m$ to her fiancé m') ( $m, w$ ) become engaged, $m^{\prime}$ becomes free else
m remains free

Claim. The algorithm terminates after at most $n^{2}$ iterations of the while loop.
At each iteration a man proposes (only once) to a woman he has never proposed to, and there are only $n^{2}$ possible pairs ( $m, w$ ) WHY ONLY $n^{2}$ ?
only $n$ choices for each of the $n$ men

## Observations

## Initialize each person to be free

while (some man is free and hasn't proposed to every woman) Choose such a man m
$\mathrm{w}=$ highest-ranked woman on m's list to whom $m$ has not yet proposed if ( $w$ is free)

$$
(m, w) \text { become engaged }
$$

else if (w prefers $m$ to her fiancé m')
( $m, w$ ) become engaged, $m^{\prime}$ becomes free
else
m remains free

When the loop terminates, the matching is perfect
Proof: By contradiction. Assume there is a free man, $m$. Because the loop terminates, $m$ proposed to all women But then all women are engaged, hence there is no free man $\rightarrow$ Contradiction

## Proof of Correctness: Stability

Claim. No unstable pairs. Proof. (by contradiction)

- Suppose ( $m, w$ ) is an unstable pair: each prefers each other to partner in Gale-Shapley matching $S^{*}$.
men propose in decreasing
- Case 1: $m$ never proposed to order of preference
$\Rightarrow m$ prefers his GS partner w' to $w$
$\Rightarrow(m, w)$ is not unstable.

Stable matching problem. Given $n$ men and $n$ women and their preferences, find a stable matching if one exists.
Gale-Shapley algorithm. Guaranteed to find a stable matching for any problem instance.
Q. If there are multiple stable matchings, which one does GS find?

Summary

- Case 2: m proposed to w .
$\Rightarrow \mathrm{w}$ rejected m (right away or later)
$\longleftarrow$ women only trade up
$\Rightarrow$ w prefers her GS partner $m^{\prime}$ to $m$. $\Rightarrow(m, w)$ is not unstable.
- In either case ( $m, w$ ) is not unstable, a contradiction. -


## Which solution?

$m_{1}: w_{1}, w_{2} \quad m_{2}: w_{2}, w_{1}$
$w_{1}: m_{2}, m_{1} \quad w_{2}: m_{1}, m_{2}$

Two stable solutions
1: $\left\{\left(m_{1}, w_{1}\right),\left(m_{2}, w_{2}\right)\right\}$
2: $\left\{\left(m_{1}, w_{2}\right),\left(m_{2}, w_{1}\right)\right\}$

GS will always find one of them (which?)
When will the other be found?

## Symmetry

The stable matching problem is symmetric w.r.t. to men and women, but the GS algorithm is asymmetric.

There is a certain unfairness in the algorithm:
If all men list different women as their first choice, they will end up with their first choice, regardless of the women's preferences (see example 3).

## Non-determinism

Notice the following line in the GS algorithm:
while (some man is free and hasn't proposed to every woman )
Choose such a man m
The algorithm does not specify WHICH
Still, it can be shown that all executions of the algorithm find the same stable matching.

This ends our discussion of stable matching.

|  |
| :---: |
| Representative Problems |
|  |
|  |
|  |

## Remember the problem solving paradigm

1. Formulate it with precision (usually using mathematical concepts, such as sets, relations, and graphs, costs, benefits, optimization criteria)
2. Design an algorithm
3. Prove its correctness, e.g. in terms of pre and post conditions
4. Analyze its complexity
5. Implement respecting the derived complexity

Often, steps 2-5 are repeated, to improve efficiency

## Interval Scheduling

You have a resource (hotel room, printer, lecture room, telescope, manufacturing facility, professor...)

There are requests to use the resource in the form of start time $s_{i}$ and finish time $f_{i}$, such that $s_{i}<f_{i}$

Objective: grant as many requests as possible.
Two requests $i$ and $j$ are compatible if they don' $\dagger$ overlap, i.e.

```
fi\leq sjor f
```


## Interval Scheduling

Input. Set of jobs with start times and finish times. Goal. Find maximum cardinality subset of compatible jobs.


What happens if you pick the first starting (a)?, the smallest (c)? What is the optimum?

## Algorithmic Approach

The interval scheduling problem is amenable to a very simple solution.

Now that you know this, can you think of it?
Hint: Think how to pick a first interval while preserving the longest possible free time...


## Weighted Interval Scheduling

Input. Set of jobs with start times, finish times, and profits.
Goal. Find maximum profit subset of compatible jobs.


## Bipartite Matching

Stable matching was defined as matching elements of two disjoint sets.

We can express this in terms of graphs.

A graph is bipartite if its nodes can be partitioned in two sets $X$ and $Y$, such that the edges are between an $x$ in $X$ and a $y$ in $Y$

## Bipartite Matching

Input. Bipartite graph.
Goal. Find maximum cardinality matching.

Matching in bipartite graphs can model assignment problems, e.g., assigning jobs to machines, where an edge between a job $j$ and a machine $m$ indicates that $m$ can do job j, or professors and courses.

How is this different from the stable matching problem?

## Independent Set

Input. Graph.
Goal. Find maximum cardinality independent set: subset of notdes such that no
 two are joined by an edge

Can you formulate interval scheduling as an independent set problem? If so, how could you solve the interval scheduling problem?

## Independent set problem

* There is no known efficient way to solve the independent set problem.
- But we just said: we can formulate interval scheduling as independent set problem..... ???
- What does "no efficient way" mean?
- The only solution we have so far is trying all sub sets and finding the largest independent one.
* How many sub sets of a set of $n$ nodes are there?


## Representative Problems / Complexities

Looking ahead...

- Interval scheduling: $n \log (n)$ greedy algorithm.
- Weighted interval scheduling: $n \log (n)$ dynamic programming algorithm.
- Independent set: NP (no known polynomial algorithm exists).


## Algorithm

Algorithm: effective procedure

- mapping input to output
effective: unambiguous, executable
- Turing defined it as: "like a Turing machine"
- program = effective procedure

Is there an algorithm for every possible problem?

## Algorithm

Algorithm: effective procedure

- mapping input to output
effective: unambiguous, executable
- Turing defined it as: "like a Turing machine"
- program = effective procedure

Is there an algorithm for every possible problem?
No, the problem must be effectively specified: "how many angels can dance on the head of a pin?" not effective. Even if it is effectively specified, there is not always an algorithm to provide an answer. This occurs often for programs analyzing programs (examples?)


## Ulam's problem

$\operatorname{def} f(n)$ :
if ( $n==1$ ) return 1 elif (odd(n)) return f( $3^{*} n+1$ ) else return $f(n / 2)$
Steps in running $f(n)$ for a few values of $n$ :
1.
$3,10,5,16,8,4,2,1$
4, 2, 1
5, 16, 8, 4, 2, 1
$6,3,10,5,16,8,4,2,1$
7, 22, 11, 34, 17, 52, $26,13,40,20,10,5,16,8,4,2,1$
8, 4, 2, 1
$9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1$ 10, 5, 16, 8, 4, 2, 1
Does $f(n)$ always stop?

## Ulam's problem

$\operatorname{def} f(n)$ :

```
        if ( }n==1\mathrm{ ) return 1
        elif (odd(n)) return f(3* n+1)
        else return f(n/2)
```

Nobody has found an $n$ for which $f$ does not stop Nobody has found a proof (so there can be no algorithm deciding this) that $f$ stops for all $n$ A generalization of this problem has been proven to be undecidable. It is called the Halting Problem. A problem $P$ is undecidable, if there is no algorithm that produces $P(x)$ for every possible input $x$

## The Halting Problem is undecidable

Given a program $P$ and input $x$ will $P$ stop on $x$ ?

We can prove (cs420):
the halting problem is undecidable
i.e. there is no algorithm $\mathrm{Halt}(P, x)$ that for any program $P$ and input $x$ decides whether $P$ stops on $x$.

But for some "nice" programs, we can prove they halt.

## Verification/equivalence undecidable

Given any specification $S$ and any program $P$ there is no algorithm that decides whether $P$ executes according to $S$

Given any two programs P1 and P2, there is no algorithm that decides $\quad \forall x: P 1(x)=P 2(x)$

Does this mean we should not build program verifiers?

## Intractability

Suppose we have a program,

- does it execute a in a reasonable time?
- E.g., towers of Hanoi (cs200).

Three pegs, one with $n$ smaller and smaller disks, move (1 disk at the time) to another peg without ever placing a larger disk on a smaller
$f(n)=\#$ moves for tower of size $n$
Monk: before a tower of Hanoi of size 100 is moved the world will have vanished

$f(n):$ \#moves in hanoi
$f(n)=2 f(n-1)+1, f(1)=1$
$f(1)=1, f(2)=3, f(3)=7, f(4)=15$
$f(n)=2^{n}-1$
How can you show that?
Can you write an iterative Hanoi algorithm?
Was the monk right?
$2^{100}$ moves, say 1 per second.....
How many years?

Is there a better algorithm?

THE ONE MILLION DOLLAR QUESTION IN THIS CLASS

Is there a better algorithm?

Pile( $n-1$ ) must be off peg1
and
completely on one other peg
before disk $n$ can be moved to its destination
so (inductively) all moves are necessary

## Algorithm complexity

Measures in units of time and space
Linear Search $X$ in dictionary $D$
$i=1$
while not at end and $X!=D[i]:$
$i=i+1$
We don' $\dagger$ know if $X$ is in $D$, and we don' $\dagger$ know where it is, so we can only give worst or average time bounds
We don't know the time for atomic actions, so we only determine Orders of Magnitude

Linear Search: time and space complexity
Space: $n$ locations in D plus some local variables
Time:
In the worst case we search all of $D$, so the loop body is executed $n$ times

In average case analysis we compute the expected number of steps: i.e., we sum the products of the probability of each option and the time cost of that option. In the average case the loop body is executed about $\mathrm{n} / 2$ times

$$
\sum_{i=1}^{n} 1 / n * i=1 / n \sum_{i=1}^{n} i=(n(n+1) / 2) / n \approx n / 2
$$

