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As soon as an Analytic Engine exists, it will necessarily 
guide the future course of the science.  Whenever any 
result is sought by its aid, the question will arise - By what 
course of calculation can these results be arrived at by the 
machine in the shortest time?  - Charles Babbage

Charles Babbage (1864) Analytic Engine (schematic)
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n Algorithm time complexity

n Plotting data and the function clubs

n Digression: line of sight algorithm

n A survey of common running times
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n How do we measure the complexity (time, space
requirements) of an algorithm?

n As a function of its input size (an integer, n) 
denoting:

n Number of inputs (e.g., sorting)
n Number of bits to represent the input (e.g., primality)
n Sometimes multiple parameters, e.g., knapsack

§ Number of objects, n
§ Knapsack capacity, C

We want to determine the running time as a 
function of problem sizes, and analyze them 
asymptotically
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n Seconds/nano-seconds?

n No, too specific & machine dependent

n Number of instructions executed?

n No, still too specific & machine dependent

n # of code fragments that take constant time?

n Yes

n What kind of fragments/instructions?

n Arithmetic operations,
memory accesses,
finite combinations of these
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n Bits?

n Too detailed, but sometimes necessary (e.g., 
knapsack capacity)

n Integers?

n Nicer, but dangerous – we can code a whole 
program in a single arbitrary sized integer, so we 
have to be careful about the size.  Better to use 
machine words
i.e, fixed size (e.g., 64, collections of bits)
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n A bound on the maximum possible running time of the 
algorithm of inputs of size n
n Usually captures the notion, but may be an overestimate

n Average case
n More accurate but difficult – need to describe what is the 

range of inputs, and what is the distribution, statistical 
analysis.  Let  I be the set of inputs, and  Pi and Ci be the 
probability and computation time of input i

!
!∈#

𝑃!𝐶!

n Often a constant factor of worst case time

Same considerations for space and other measures.
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n For many problems, there is a natural, but likely 
naïve, brute force search algorithm that checks 
every possible solution
n Enumerating such solutions is usually an exponential 

function of n (recall counting from CS220).
n Hence naïve

n Definition: an algorithm is said to be polynomial 
time if there exist positive constants  c, and d, such 
that on any input of size n, the running time is 
bounded by c nd

What about an algorithm whose running time is c n lg n?
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(Why) is the distinction important?
n One the one hand, a polynomial function like

6.03 ×1023 n20 is polynomial, it is too large in practice 
(e.g., for n=10)

n On the other hand, some algorithm whose worst-case 
execution time is exponential behave much better in 
practice because the worst-case instances are (seem to be) 
rare
n Simplex method for solving linear programming

So why?
n In practice, the polynomials have a low degree and 

coefficients
n The difference between the polynomial-exponential 

barrier reveals interesting and crucial structure of the 
problem
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n We are building mathematical functions that model the execution time 
(or other properties) of programs and algorithms.

n Need a mechanism to compare them.
n How do we compare numbers?  Using the relations: <,>,≤, and ≥
n Partial/total orders

n The Big-Oh, Big-Omega and Big-Theta notation (introduced in CS 220) is 
such an order relation.

Here, 𝑓 ≼ 𝑔means that f grows slower than g (and also that g grows 
faster than f).  We may also use 𝑔 ⋗ 𝑓. So the following claims mean the 
same thing
n 𝑓(𝑛) ≼ 𝑔(𝑛)
n 𝑔 ≽ 𝑓 or  𝑔 ⋗ 𝑓
n 𝑓 = 𝑂(𝑔)
n 𝑔(𝑛) = Ω(𝑓(𝑛))

n Often, one of the functions is our (complicated) model 𝑇(𝑛) and the 
other is a simpler function (e.g., a monomial)
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F(n) is O(G(n))

F(n) is W(H(n))

if G(n) = c.H(n)
then F(n) is Q(G(n))

These measures were 
introduced in CS220

G(n)

F(n)

H(n)
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A function 𝑇(𝑛) is 𝑂(𝑓(𝑛)) if there exist constants 𝑐 >
0 and 𝑛, > 0 such that 

for all 𝑛 ³ 𝑛0 ∶ 𝑇(𝑛) £ 𝑐 𝑓(𝑛)
n Example:   𝑇 𝑛 = 32𝑛2+ 16𝑛 + 32.

n 𝑇(𝑛) is 𝑂(𝑛2)
n ALSO TRUE:

n 𝑇(𝑛) is 𝑂 𝑛3
n 𝑇 𝑛 is𝑂 2𝑛

n Many possible upper bounds for one function!  
We always look for the best (lowest) upper 
bound, but it is not always easy to establish
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n Transitivity
n 𝑓 ≼ 𝑔 and 𝑔 ≼ ℎ implies 𝑓 ≼ ℎ

n Additivity  (Additive slowdown)
n 𝑓 ≼ ℎ and 𝑔 ≼ ℎ implies 𝑓 + 𝑔 ≼ ℎ

n Multiplication by a constant
n 𝑓 ≼ 𝑔 implies 𝑐×𝑓 ≼ 𝑔 (and of course 𝑓 ≼ 𝑐×𝑔 holds 

by definition
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Although Big-Oh and Big-Omega are equivalent, a 
special need arises when our model 𝑇(𝑛) is quantified 
over all algorithms to solve the given problem
n Example: consider the claim that any comparison based 

algorithm must make at least 𝑐 × 𝑛 log 𝑛 comparisons, 
for some constant, 𝑐.We say that comparison based 
sorting is lower bounded by 𝑛 lg 𝑛, i.e., that
𝑇 𝑛 is Ω(𝑛 lg 𝑛) and we often reserve the Ω
notation for this.

n Problems have lower bounds
n A common lower bound is the size of the input itself (any 

algorithm to solve the problem must read all the inputs)
n Sometimes we can prove better/tighter lower bounds (e.g., 

sorting above and searching is structured data (CS 420)
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n If 𝑇 𝑛 is Ω(𝑓(𝑛))and 𝑇 𝑛 is also 𝑂(𝑓(𝑛)) we 

have a tight bound, and we write that 𝑇 𝑛 is 
Θ(𝑓(𝑛)).

n It means that we have closed the problem, 
since the algorithm that we have attains the 
lower bound on the problem
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Sorting is a closed problem
n It has a lower bound of 𝑛 log 𝑛. We say that sorting 

is Ω(𝑛 log 𝑛)
n There are many sorting algorithms whose 

execution time is 𝑂(𝑛 log 𝑛) (see how we use big-Oh 
to talk about an algorithm)

Matrix multiplication is an open problem
n It is Ω(𝑛.). Why?

n The standard algorithm is 𝑂 𝑛.
n Another well known algorithm is 𝑂 𝑛/..12 and further 

improvements reduce the polynomial degree even 
further

See how the polynomial degree does not have to be 
integer
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n In empirical CS (HPC, performance optimization, 
parallel programming) we plot functions 
describing the run time (or the memory use) of a 
program:
n This can be as a function of the input size (or other 

parameters like # of processors)

n The functions are usually positive and 
monotonically increasing

n We are interested in the asymptotic behavior, i.e., 
lim
/→1

𝑓(𝑛)

n How should we graph/plot them (e.g., lab report)?
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n The plot shows the ideal (expected) vs empirical (observed) 
values.  Which one is ideal, and which is “just a bit off?”
n Series 1 (blue)
n Series 2 (orange)
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n Same question, data is plotted differently.
n Series 1 (blue)
n Series 2 (orange)
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n What class of functions are 
f, g, and h? 
n Polynomial? What 

degree?
n Exponential? What base? 

n Impossible/hard to tell
23

n f(n) g(n) h(n)

1 2 9 2

2 12 18 6

3 36 35 24

4 80 68 68

5 150 131 162
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n The human visual system is very good at 
identifying linear (straight line) plots.

n Everything else is approximate.

n Asymptotically increasing functions just “swoosh 
up,” i.e., lim

/→1
𝑓 𝑛 = ∞

n Not enough range of data in second set of examples 
here just 1 … 5)
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Much better idea now about which 
function may be polynomial vs 
exponential? But still

n all is not clear (order, base …)
n h(n) may spike up later…

25

n f(n) g(n) h(n)
1 2 9 2
2 12 18 6
3 36 35 24
4 80 68 68
5 150 131 162
7 400 520 624
10 1100 4106 2510
12 1872 16396 5196
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We get the most information from straight lines!
n We can easily recognize a straight line 

y = ax+b
n The slope (a) and y intercept (b) tells us all.

n How to “massage the data”  into straight lines.
n Change the scale to logarithmic: it turns a 

multiplicative factor into a shift (y axis crossing 
b) , and an exponential into a multiplicative 
factor (slope a)
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𝑦 = 2/ log01 𝑦 = 𝑛 log012 linear in n

𝑦 = 3/ log01 𝑦 = 𝑛 log013
the slope is the (log of the) base of the 

exponent
𝑦 = 6×3/ log01 𝑦 = 𝑛 log013 + log016

6 shifts up (in log scale)
𝑦 = 3//5 log01 𝑦 = 𝑛 log013 − log015

5 shifts down
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n 2n 3n 20*3n

0 1 1 20

1 2 3 60

2 4 9 180

3 8 27 540

4 16 81 1620

5 32 243 4860

7 128 2087 41740

10 1024 56349 1126980
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semi-log plot:
y–axis on log scale
x-axis linear

angle:  base
shift:    multiplicative factor
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What is the logarithm of a polynomial (actually a 
monomial)?
n 𝑦 = 5𝑛!

n log"# 𝑦 = log"#5 + log"# 𝑛!= log"#5 + 3 log"# 𝑛

Definitely not a straight line.

n But what about this?
n So we use a log-log scale/plot
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n n2 n3 20*n3

1 1 1 20

2 4 8 160

4 16 64 1280

8 64 512 10240

16 256 4096 81820

32 1024 32768 655360
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n Functions like 𝑓 𝑛 = 33 + 43 and polynomials that have 
more than one term.  We don’t have a simple algebraic 
rule to compute logarithms of the sum of multiple terms

n Now, 𝑓 𝑛 = 3& +4& = 4& 1+ '
(

&

n and since #
$
< 1, so lim

%→'
1 + #

$

%
= 1

n so, as 𝑛 →∞, we have log𝑓 𝑛 → log4&×1 = log4×𝑛
i.e., only the dominant term matters

n For a polynomial like 𝑓 𝑛 = 4×𝑛' +3×𝑛) we do the same 
thing 𝑓 𝑛 = 𝑛. 4 + .

:3
and

as 𝑛 → ∞, the term in parentheses approaches 4,
so log 𝑓 𝑛 → log 4×𝑛. = log 4 + 3 log 𝑛

n Message: when plotting your data, look for the trend among 
the points with larger input values

31
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n f(n)
1 2
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4 80
5 150
7 400
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The semi-log plot does not give a straight line, 
so f is not exponential 
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n f(n)
1 2
2 12
3 36
4 80
5 150
7 400
10 1100

12 1872

YES!  The log-log plot is asymptotically a straight line, so f 
is polynomial, but what is its leading term? 
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Compare with n, n2,n3,n4

It is degree 3, no multiplicative factor
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n f(n) n2 n3 n4

1 2 1 1 1
2 12 4 8 16
3 36 9 27 81
4 80 16 64 256
5 150 25 125 625
7 400 49 343 2401
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n All polynomial functions are members
n Membership test: to enter the club you scan your id

n checker is just a log-log plotter you’re in if it’s a 
straight line with slope between 0° to  90°

n Slowest growing polynomial (fastest algorithms) 
are polynomials 𝑓 𝑛 = 𝑛$ where, 𝜖 is an 
arbitrarily small constant.

n Fastest growing polynomial (slowest algorithms) 
𝑓 𝑛 = 𝑛% where, Γ is an arbitrarily large constant

35
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n All exponential functions are members
n Membership test: to enter the club you scan your id

n checker is just a semi-log plotter you’re in if it’s a 
straight line with slope between 0° to  90°

n Slowest growing exponential (fastest algorithms) 
are exponential 𝑓 𝑛 = 𝜀& where, 𝜖 is an arbitrarily 
small constant.

n Fastest growing exponential (slowest algorithms) 
𝑓 𝑛 = Γ& where, Γ is an arbitrarily large constant.
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n The basic mathematical definition of ⋖,⋗, 𝑂 and Ω still 
hold: for large enough n one function exceeds the other,

n The plotting trick is simply to compress the x or y axis 
plotting, and it doesn’t change asymptotic behavior

n What if we compress the x axis and not the y axis: a so-
called log-semi plot (but this naming convention is soon 
going to prove inadequate)
n These are the poly-log functions: polynomials of log 𝑛
n The worst poly-log algorithm is faster the fastest 

polynomial algorithm log*𝑛 ⋖ 𝑛+

n Super-exponential functions: straight line when we plot 
log log 𝑓(𝑛) vs 𝑛
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n Each club conducts their internal tournaments, and 
ranks their members.

n Algorithm designers try to invent new algorithms for 
open problems
n When they give a new algorithm when the previous best 

was in the same club, they reduce the slope  by a constant, 
and it’s a big accomplishment, e.g., going from O 𝑛' to  
O 𝑛).-

n even if that improvement comes at a “cost” of a factor that is 
equal the slowest member of a faster club

n A new algorithm that’s in a faster club a major 
breakthrough.

n Breakthroughs between the exponential and polynomial 
clubs are increasingly unlikely
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First, we define what it means for a function to be strictly linear 
and asymptotically linear.
n A function y = g ( x ) is said to be strictly linear if there are 

constants m and b such that y = m x + b
n A function y = g ( x ) is said to be asymptotically linear if 

y = m x + b when lim x→ ∞  (we often drop the 
asymptotically adjective)
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n What happens when you add two functions
n g(x) = f1(x) + f2(x)

n If they are members of the same polynomial club
n say, f1(x) = x, f2(x) = x2

n g(x) is a member of the polynomial club and 
asymptotically linear 

n If they are members of different clubs, exponential and 
polynomial
n say, f1(x) = 2x, f2(x) = x2

n g(x) is a member of the exponential club and 
asymptotically linear 
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n What happens when we multiply two functions?
n g(x) = f1(x) * f2(x)

n If they are members of the same club 
n say, f1(x) = x2, f2(x) = x3

n g(x) is a member of the same club (asymptotically 
linear) with a slope of the sum of the slopes 

n If they are members of different clubs
n say, f1(x) = x2, f2(x) = log(x)
n g(x) is not a member of the faster growing 

polynomial club, but it is indistinguishable from it.  
While not a straight line, even asymptotically it will 
continue to increase, but you won't be able to notice 
the difference.
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Let y = f ( x ) be an arbitrary (asymptotically monotonically 
increasing) function that represents the execution time of a 
program on an input of size x.

We can introduce four scaling variables to massage the input 
or output data. 

n y ′ = log y
n y ″ = log log y
n x ′ = log x
n x ″ = log log x
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Substituting the scaling variables yields the following nine 
massaging functions for the normal, log, and log log cases of 
each variable.  This allows us to massage the input and output 
data for the different frames of reference in the graphs.
n y = h 0 ( x ) is linear for linear functions
n y ′ = h 1 ( x ) is linear for exponential functions

n y ″ = h 2 ( x ) is linear for doubly exponential
n y = h 3 ( x ′ ) is linear for logarithmic functions 

n y = h 4 ( x ″ )
n y ′ = h 5 ( x ′ ) is linear for polynomial functions 
n y ′ = h 6 ( x ″ ) is linear for poly logarithmic functions

n y ″ = h 7 ( x ′ )
n y ″ = h 8 ( x ″ )
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Consider three clubs, Ca, Cb and Cc, with membership defining 
functions, ha, hb, and hc, where Ca grows faster than Cb and 
Cc grows slower than Cb. Membership defining functions are the 
massaging functions corresponding to these clubs.

Consider a function f ( x ) ∈ Cb.

n f ( x ) swoops up if it grows strictly faster than a membership 
defining function, i.e., even faster than a straight line with 
slope approaching 90∘. 

n f ( x ) swoops right if it grows strictly slower than a 
membership defining function, i.e., even slower than a 
straight line with slope approaching 0∘. 
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