
9/1/21

1

Sanjay Rajopadhye
Colorado State University

n Students in on-campus sections (001, 002) take the exam in the
CSB 110 lab. In person proctoring.
n Exam hours: 8:00AM to 4:00PM (the lab closes at 6:00PM, but it’s a 2-

hour exam)
n Online students (sec 801) take it online with Honorlock

proctoring.
n There will be a practice exam on Thursday

n The actual exam is a quiz in Canvas. There will be written
questions

n We will grade the exam on Sunday.
n If your score is high enough (above a TBD threshold) we will bump it

up to 100
n If your score is too low (below a TBD floor), you should really drop

this class
n If your score is in between, we will allow you one retake, and you

will get the average of the two attempts
n Retake on Tuesday, graded on Wednesday.

2

9/1/21

2

The problem statement:
Given
n an array, X[i,j] of the elevations of points in a (hilly)

terrain, and
n information about where the sun currently is,

determine, for each point, whether it is sunlit or in
the shade.

Also called the line-of-sight problem.
Imagine that you were positioned at the sun (beware
Icarius) then which points in the hilly terrain would be
in your line of sight and which would be hidden from
view

3

Inputs:
n X[i, j] is an n x n array of (floating point) numbers (in meters)
n The angle of elevation of the sun Θ ≤ 90°
n The angle of azimuth of the sun, Φ
n The horizontal distance (in meters) between adjacent points, h,

(the resolution or scale of our data)
Output:
n S[i, j] an n x n array of Booleans:

n If [i, j] is in the shade, S[i, j] is 1
n Otherwise it is 0

Simplifying assumptions & conventions:
n The azimuth is due west, Φ= 0. So only points to the west (i.e.,

on the ith row) can cast a shadow on [i, j]
n So, focus on just the ith row of X, which we re-name as R, a 1-

dimensional array (an outer loop iterates over each row). This
Simplifies notation/figures on next few slides

4

9/1/21

3

Some easy problems
n Add up n elements of an array Θ(#)
n Max of all elements in an array Θ(#)

What if you wanted all
intermediate sums/maxima

% & = (
)*+

,
- .

Lower bound? Ω(#)
First (direct) algorithm? 0(#1)
Can we do better? 0(#)

5

r = 0
for i in range(length(X)):
r += X[i]

r = 0; //minus infinity
for i in range(length(X)):
r max= X[i]

for i in range(length(X)):
Y[i] = 0
for k in range(i)
Y[i] += X[k]

Y[0] = X[0]
for i in range(length(X)-1):

Y[i+1] = Y[i] + X[i+1]

Use predicate logic and some simple reasoning. And
remember that we only look at the ith row.
n A point at j is in the shade, if some point to its west casts

a shadow in it, i.e.,

∃": 0 ≤ " < ' ,) " −)[']
ℎ(' − ") > tanΘ

n First algorithm implements this as a loop (quadratic time
per row)

n Second algorithm does an “early exit:” as soon as we
find a point that puts j in the shade, we exit the loop

n Next, we improve the complexity using the idea of the
running max. First change existential to universal

6

9/1/21

4

¬ ∀#: 0 ≤ # < (, * # − * (
ℎ (− # ≤ tanΘ

Calculate the negation: j is sunny if

∀#: 0 ≤ # < (, * # − * (
ℎ (− # ≤ tanΘ

Take all terms involving j and k on opposite sides
∀#: 0 ≤ # < (, * (+ ℎ(tanΘ ≥ * # + ℎ# tanΘ

LHS is independent of the quantified variable.
Distribute it and use max

* (+ ℎ(tanΘ ≥ max56789 * # + ℎ# tanΘ
Calculate the RHS using the running max idea

7

n Wim’s slides 44 – 77

8

